Paisii Hilendarski University of Plovdiv

Faculty of Mathematics and Informatics
Department of Computer Systems

Development of intelligent tools for working with

virtualized cultural and historical sites

ABSTRACT

of a doctoral dissertation for the award of the educational and scientific degree of
Doctor (PhD) in the field of higher education 4. Natural Sciences, Mathematics and
Informatics; professional field 4.6. Informatics and Computer Science;

Doctoral program Informatics

PhD student: lIlia Iliev Nedelchev

Scientific supervisor: Prof. Dr. Stanimir Stoyanov

Plovdiv, 2025



The dissertation work was discussed and directed for defense before a scientific
jury at a meeting of the Department of "Computer Systems" at the Faculty of
Mathematics and Informatics of the "Paisii Hilendarski" University, Plovdiv, on
07.11.2025

The dissertation work contains 144 pages. The bibliography includes 116
sources. The list of author's publications consists of 2 titles.

The defense of the dissertation work will take place on 06.02.2026 in the
Conference Hall of the New Building of the "Paisii Hilendarski University", Plovdiv.

The materials for the defense are available to those interested in the secretariat
of the Faculty of Mathematics and Informatics - room 330 in the New Building of the
"Paisii Hilendarski'" University, every working day from 08:30 to 17:00.

Scientific jury:
Internal Members:
1) Prof. Dr. Asya Georgieva Stoyanova-Doycheva — Faculty of
Mathematics and Informatics, Plovdiv University ,,Paisii Hilendarski®.
2) Assoc. Prof. Dr. Veneta Veselinova Tabakova-Komsalova — Faculty of
Mathematics and Informatics, Plovdiv University ,,Paisii Hilendarski‘.
External Members:
3) Prof. Dr. Vladimir Vasilev Monov — Institute of Information and
Communication Technologies, Bulgarian Academy of Sciences (IIKT-
BAS).
4) Prof. Dr. Evdokia Nikolaeva Sotirova — University “Prof. Dr. Asen
Zlatarov”, Burgas.
5) Assoc. Prof. Dr. Emil Georgiev Delinov — Thrace University — Stara
Zagora.
Reserve Members:
6) Prof. Dr. Sotir Nikolov Sotirov — University “Prof. Dr. Asen Zlatarov”,
Burgas.
7) Assoc. Prof. Dr. Georgi Nikolov Cholakov — Faculty of Mathematics and

Informatics, Plovdiv University ,,Paisii Hilendarski®.



Author: llia lliev Nedelchev

Title: "Development of intelligent tools for working with virtualized cultural
and historical sites"

Plovdiv, 2025

INTRODICTION

The dissertation is dedicated to the development of intelligent,
knowledge-based tools for the digital presentation of our cultural and
historical heritage.

The primary objective of the dissertation is to establish a platform for the
digitization of our cultural and historical heritage. A key component of this
platform will be a personal tourist guide. To achieve the goal, the following
tasks have been formulated:

e Analysis of the latest trends in building such information systems.

e  Proposal for improving the platform architecture.

o Development of a concept, model, and architecture of a
personalized tourist guide.

e Implementation of a prototype of a personal tourist guide and
conducting experiments with the prototype.

The research conducted during the doctoral program goes through the

following stages:

e Creation of a general concept, model, and architecture of a basic
tourist guide.

o Development of a prototype of the basic tourist guide, which can
be adapted for a specific tourist destination.

e Parameters are specified, taking into account personal
characteristics of tourists, which can be used to personalize the
basic tourist guide.

e The possibility of adapting the basic tourist guide for a different
application area is demonstrated - in this case, for monitoring air
quality in the Plovdiv region.



In accordance with the goal and objectives, an appropriate methodology
for conducting the research is proposed. The dissertation consists of an
introduction, four chapters, and a conclusion.

CHAPTER ONE: STATE OF THE PROBLEM

In accordance with the topic of the dissertation, the following are of
interest:

e  The specific aspects of modern tourists.

e  The peculiarities of the virtual tourist guide.

e Intelligent agents.

The specific aspects of tourist services and tourism are analyzed. The
strategic goals in the management of the tourist destination are related to
improving its competitiveness, increasing tourist satisfaction, and achieving
a balance in the interests of all subjects (national and local authorities, tourist
business, local community, and tourists) [1], as well as to achieving
sustainable tourism, requiring responsible behavior of all parties. Essential
for the development of tourism is the quality of the tourist product, which
encompasses various goods and services designed to meet tourists' needs [2].
The market for tourist services is extremely specific due to the provision of
various types of services, including information [3]. Technologies in tourism
are a multidimensional construct, and their effectiveness is assessed based on
four attributes:  accessibility, informativeness, interactivity, and
personalization [4].

The features of the virtual tourist guide are presented. The main approach
in creating virtual tourist guides is to create a system that will facilitate the
mechanism of traditional information search and ticket booking/purchase.
The systems created should reduce the activities performed by tourists by
searching for information about tourist attractions, their working hours, a
suitable period for visiting, and a way to reach them, which will allow for
more effective time management by tourists. The virtual tourist guide needs
to have a user-oriented design to meet their needs and facilitate the process
of using the application. The design of the application, which is user-oriented,
should be interactive, requiring the opinion of users during its development
to create a usable and accessible product. The main meaning of the virtual
tourist guide is to help the tourist find the information they need at the right
time. The long time it takes tourists to navigate an unfamiliar city and identify

4



tourist attractions and their locations can be significantly reduced by using a
virtual tour guide.

The specifics of artificial intelligence and intelligent agents are analyzed.
Definitions of the essence of artificial intelligence are different, as it is
defined as machine learning, which includes programming approaches that
use “various algorithms and methods, such as linear regression, decision
trees, Bayesian networks, evolutionary algorithms, and artificial neural
networks” [5], as well as a solution that increases the power of computer
systems. Artificial intelligence is also the ability to create such software,
through which to “demonstrate thinking comparable to that of humans, with
the artificial intelligence being able to perceive, analyze and interact with its
environment, learn from previous experience and solve complex problems
autonomously without human intervention” [6].

Intelligent agents are, by their nature, independent programs or objects
that interact with their environment by perceiving it through sensors. In
artificial intelligence, intelligent agents are autonomous entities using sensors
and actuators to explore the environment and perform various activities that
are rational, i.e., maximize efficiency and achieve the best outcome.

From the review of the state of the issue, conclusions were drawn that
guided the conduct of the study, the results of which are presented in the
dissertation.

Regarding the specifics of modern tourists:

e Shifting the focus of the tourist offer from traditional to individual

tourist offers.

e Change in the preferences of tourists from the consumption of
unified products to the use of individual offers to achieve specific
experiences.

e Tourists are distinguished into those who use organized tourist trips
and those who individually organize their visit to the tourist
destination.

Regarding the virtual tourist guide:

e  The virtual tourist guide should provide the opportunity to adapt to
different regions.

e To verify the performance of the results, the implemented system
was adapted for the city of Gabrovo.

e The main goal of creating a virtual tourist guide is to solve the
above-mentioned problems related to the awareness of tourists about
different tourist destinations (Gabrovo was chosen as a tourist
destination for testing the guide).



e  The virtual tourist guide will support the work of tourist information
centers (in this case, Gabrovo), which is why it is necessary to be
directed at the individual tourist and provide him with the
opportunity to create an individual optimal route, according to
personal preferences.

e The virtual tourist guide must adapt to changes in the environment,
such as changing weather conditions, deviation of the tourist from
the set route, traffic jams on the road, etc.

e The main scenario of the virtual tourist guide is to create a tourist
route, using environmental data such as time, location of a person,
as well as parameters set by the tourist — budget, distance and time
available. When creating the tourist route, the guide will provide
information to the tourist about the most highly rated tourist sites.

e Although in recent years the development of more information
systems and applications in the field of tourism has been established,
they have been developed for specific tourist services, which require
tourists to use several applications when visiting tourist destinations.
Few applications have been developed that provide tourists with
access to all tourist services, contain all the necessary information,
and use tools for analyzing the situation in the tourist destination in
real time.

For the successful implementation of the planned virtual tourist guide, a
thorough review and analysis of the existing state of intelligent agents (Jason,
Natural Language Processing, NLU — Rasa, LLM — OpenAl, and Vips) is
necessary.



CHAPTER TWO: MODEL AND ARCHITECTURE OF THE

PERSONAL TOUR GUIDE

The region of the city of Gabrovo was chosen to test the proposed model,
architecture, and prototype implementation of a tourist guide. The prototype
is adapted to serve tourists visiting this region. Gabrovo has a strategic
location in terms of accessibility and attracting tourists, both from the Black
Sea coast and from Western Bulgaria. The general awareness of Gabrovo as
a tourist destination can be described as unsatisfactory. The main drawback
is the chaotic presentation of information about individual tourist sites, such
as places to stay, eat, tourist attractions, transportation options, etc., and
limited opportunity for online communication. Mobile applications are
missing, which is a hindering factor in attracting tourists. The main goal of
creating a virtual tourist guide is to solve the above-mentioned problems
related to tourists' awareness of the tourist destination. The virtual tourist
guide will support the work of the tourist information center in Gabrovo,
which is why it is necessary to be directed at the individual tourist and provide
him with the opportunity to compile an individual optimal route, according
to personal preferences. Gabrovo and the surrounding area contain numerous
tourist sites and attractions, which, due to their historical, cultural, and natural
riches, should be visited by every tourist.

The main functionalities of the virtual agent are related to the
organization of an optimal tourist route, which will be tailored to the tourists'
free time, the type of transport they have, the budget, and the distance they
are willing to travel. Unlike traditional information applications, the virtual
tourist guide will not only present a list of all tourist sites in Gabrovo and the
region, but will also prepare a personal tourist plan.

The virtual tourist guide is a developed mobile application that is
available for:

e mobile devices with Android operating system;

o website (https://exploring-gabrovo.com/).

The system consists of several parts:

e mobile application;

e public website;

e content management panel.

The created mobile application is extremely intuitive, creating an
individual plan for users in two steps. Figure 1 presents the steps that the user



https://exploring-gabrovo.com/

of the mobile application should take in order to have a plan prepared for
them.

®Gasrovo

-
2>
*

Figure 1. Steps for preparing a tourism plan

The steps for preparing a travel plan are:

e First, a language must be selected, because the application is
planned for both Bulgarian and foreign tourists. For this purpose,
there is an option in the interface to select Bulgarian or English.

e Second, the user must indicate the time interval for his plan, the
distance he is willing to travel, his budget, and his mode of
transportation.

After pressing the "Create a plan" button, a screen with a generated
tourist plan appears. The user is given the opportunity to exclude objects,
thereby generating a new, more optimal plan than the previous one. The
virtual tourist guide allows, when marking a given object by the user, to
visualize additional information about it, which includes the location of the
object, entrance fee, weather conditions in which the visit is appropriate, a
description of the object, and a gallery. When generating the tourist plan
according to the parameters set by the user, the current location of the user is
also considered through the geolocation function of the mobile phone. The
virtual tourist guide also considers the meteorological situation at the time of
generating the plan, selecting only tourist objects that are suitable for visiting
according to the specifics of the weather. The selection of tourist objects that

8



are included in the virtual tourist guide is based on the rating received for
them from Google ratings.

The public website has the same functionality as the mobile application
and includes a list of all tourist objects that are available in the system.

@ GABROVO

nnnnnnn

Figure 2. Home page of the public website

Fig. 2 shows the home page of the public website, which also contains
the form through which users can generate a tourist route. The home page
also presents a list of popular locations. The public website contains a list of
all tourist sites in Gabrovo and the region. The sites in the list are sorted by
site rating, starting with the highest rated sites.

The site management panel is intended only for users who have the right
to edit and add content. Such users can be system administrators, employees
of a tourist information center, or employees of a specific tourist site. In the
content management panel, new sites can be added, the content of already
added sites can be edited, and existing ones can be deleted. In this panel, users
can be added and removed from the administrators, with each user having
either an administrator or an editor role. The site management panel screen

9



includes a list of all sites, with an edit button and a delete button next to each
site. On the same page, there is also a button to add a new object. When you
click add or edit, a window opens to fill in or edit information about the
object.

Fig. 3 presents the architecture of the tourist guide. The mobile
application makes requests to a web resource to retrieve the necessary
information about the objects and generate a tourist route for the user. The
web application makes requests for a database in which information about
objects is stored. The mobile application was implemented using Flutter
technology, which is an open-source user interface software development kit
created by Google [7]. Applications for Android, iOS, Linux, Mac, Windows,
Google Fuchsia, and the web from a single code base were also used for
development. The web application was implemented using ASP.NET Core
technology — a free open-source web platform and successor to ASP.NET,
developed by Microsoft [8]. The web application consists of a website and a
REST API, with the REST API processing the requests sent by the mobile
application [9].

% GR. =
—O

@/ S

@ ﬂ]ﬁ:‘iﬂg

Figure 3. Application architecture visualization

The web application is hosted on the Heroku cloud platform, and the
virtualization tool is Docker [10]. Docker is a set of platform-as-a-service
products that use OS-level virtualization to deliver software in packages
called containers. The open-source relational database PostgreSQL is used as
the database, which supports multiple data types, transactions, encryption,

10



regular expressions, etc., and is widely used, including by large companies
[11]. The architecture of the virtual tour guide contains intelligent agents, the
decision being made due to the fact that one of the ideas behind the creation
of intelligent agents is that they should not simply follow a certain algorithm,
as is the case with “typical” computer programs, but should act as a human
would. The main properties of intelligent agents are autonomy, proactivity,
reactivity, and social skills. The virtual tour guide is a multi-layered system
[12] that includes a multi-agent environment implemented on the Jason
framework. Agent Environment Service is a Java environment for Jason
agents. It includes a Rest Api implemented using Javalin. This allows agents
to communicate with the outside world.

&

Google Maps WeatherAPI.com

4

Tourist Service Map Service Weather Service

@ E Rasa

Affractions Store Agent Environment Chat Service

ervice Service
/ \ F——
ﬂfaagg%ﬂfam

Planner Agents Guide Agents

Figure 4. Multi-agent environment of the virtual tour guide

Two types of Jason agents are used:

e  Planner Agents — The role of which is to manage the Guide agents
when a request for a new plan comes. Planner Agents create a Guide
agent. They also take care of releasing the Guide Agent when it is
not needed.

e  Guide Agent — this is an agent who takes care of the individual plan
of the tourist. For each tourist, there is a separate Guide agent; this

11



agent generates a plan, monitors changes in the environment,
location, weather conditions, working hours, and, based on these
changes the plan if necessary. Its main goal is to take the user
through the maximum rated attractions until the end of the time
available to the user. This agent reacts proactively to changes in the
environment.

The BDI-based architecture (Belief-desire-intention) was chosen for the
architecture of the agents. The specified choice was made due to the fact that
this type of architecture is as close as possible to human behavior when
making decisions.

User part — initially, the mobile application for users was developed with
Xamarin — it allows the development of platform-independent applications,
which means that after development, there will be support for both Android
and iSO. Xamarin is owned by Microsoft and supported by Microsoft, this is
one of the reasons for choosing this technology. After testing Xamarin for the
mobile technology, Flutter was chosen. An ASP.NET Core MVC application
with Blazor was used to develop the website. Blazor is compiled to Web
Assembly, which is executed on the client’s web browser. The mobile
application and the website will share a large part of the logic, which will be
written in the C# programming language. Both applications will address a
Web application, which will store user data and objects. The website will also
contain an additional part that will serve for the administration of users and
objects by users with the administrator role.

Server part — the server part consists of a web application, a database,
and a Java REST application with the JSON environment [13]. The web
application uses ASP.NET Core technology to implement a REST
application. This application will store and administer data about users and
objects and will make requests to the Jason environment for preparing
individual tourist plans. PostreSQL is used as a database. PostreSQL is an
open source relational database. The Jason environment will be integrated
with the Spark library, through which the REST application will be
implemented.

In addition to the multi-agent environment, there are 4 more web
applications and one mobile application. Attractions Store is implemented
using ASP:

e NET Core is an application that contains information about tourist
attractions. It has a connection to a Sql Server database, which
contains information about tourist attractions and their
characteristics, such as opening hours, a photo gallery, whether they

12



are suitable for rainy weather, whether they are outdoors or indoors,
GPS location.

Tourist Service is also implemented using ASP.NET Core
technology. The purpose of this web application is to accept requests
from tourists made through the mobile application, as well as regular
information about changes in the tourist (such as current location
and changes in the requirements for drawing up the plan).

Map Service takes care of storing the distances between the
attractions, and can return information if the user is not close to a
given attraction. The application also connects to the Google Routes
service, which helps calculate how long it will take the user to reach
a given attraction based on whether they are by car or on foot.
Weather Service returns information about the weather conditions
at a given object and where the tourist is located. This service makes
calls to WeatherApi.Com at a certain interval and caches the
information, thus reducing calls to WeatherApi.Com.

Chat Service manages the chat interaction with the user, as the user
can always ask a question in a chat window and receive an answer.
There are two types of chat. Rasa uses predefined scenarios, such as
Rasa Nlu (Natural Language Understanding), to understand the
user's intention. If the Rasa scenario cannot process the given user
request, the chat is forwarded to the ChatGp API, which uses LLM
to process a general request. When the user approaches a given
object, its GPS coordinates are close to the coordinates of the object,
and a chat is triggered for the corresponding object, and Rasa
scenarios for the corresponding object are triggered again first, but
if the conversation goes outside the defined scenario, a call is made
to Chat GPT.

The mobile application is implemented using Flutter technology,
constantly sending the user's coordinates after starting the plan execution.
Thus, if necessary and if the user deviates, the Guide agent sends a message
to the Tourist Service, which notifies the user accordingly. It also allows him
to change the plan when changing the direction, weather conditions, or when
a tourist site closes for the day.

When processing a request for a plan, the following activities are
included:

Request from a mobile application or website to create a plan. The
user ID, location, plan start time, and plan end time are sent.
A request is made to the database to retrieve the user profile by ID.

13



Response to the request to the database for the user profile.

A request is made to the Jason environment to create a travel plan
for the user with the user profile, location, plan start time, and plan
end time.

Response that the plan was successfully accepted and placed in the
agent's queue for processing.

Request from the Jason environment to the Web application for
information about objects near the location and working hours in the
plan interval.

Request to the database for information about objects that are near
the location and have working hours in the given interval.
Response from the database to the web application with information
about the objects.

Response from the web application to the Jason environment with
information about the objects.

Sending the prepared plan from the Jason environment to the web
application.

Response from the web application that it has received the plan
successfully.

Response from the web application to the user, including the
prepared plan.

The processes in the virtual tour guide system include:

Process before the user registers or authenticates in the system. This
is the process in which the user enters the system, but not through
their profile (or does not yet have one). He will see the registration
and login form, will be able to view the various objects, but will not
have access to the route preparation module.

Process of registration and filling out a profile for a new user. In this
process, the user will create their profile and fill in their preferences
through a questionnaire.

Process of preparing a route for a logged-in user. This process can
be started once the user has entered their profile and, based on the
data provided by them, a personal route can be prepared for them.
Process of administering content in the system. This process can
only be performed by a user with the administrator role.

14



THREE: PROTOTYPE IMPLEMENTATION

Jason, a tool for building a multi-agent system, was used for the
programmatic implementation of the prototype. Jason is an open source
interpreter that extends AgentSpeak, allowing the creation of an environment
for agents using the Java programming language. The agents themselves are
described using Prolog. Advances in artificial intelligence will require the
development of agents that seamlessly combine reactive and proactive
behavior. These agents will not only respond to immediate needs, but will
also anticipate and prepare for future challenges [14]. The above-mentioned
properties of intelligent agents allow the tour guide to effectively collaborate
with individual agents. The achievement of the tour guide's goals is also
based on a multi-agent environment. It is important to note that the agents
used can adapt to changes in the state of the various tourist sites that are used.

The architecture used by the tour guide in terms of agents is BDI - Belief-
desire-intention. This architecture is a major theme in many studies on
intelligent agents. In the BDI architecture, beliefs represent the agent's
information about its environment, other agents, and itself, goals (desires) are
states to be achieved, and intentions are commitments to achieve specific
goals [83]. The architecture of the prototype system is presented in Figure 5.

Figure 5. Prototype system architecture

As can be seen from the architecture presented in Figure 5, the mobile
application makes requests to a web resource to retrieve information about
the objects and to generate a tourist route for the client. In turn, the web
application makes requests to a database in which the information about the

15



objects is stored. The mobile application is implemented using Flutter (an
open source user interface software created by Google that is used to develop
applications for Android, iOS, Linux, Mac, Windows, Google Fuchsia and
the web from a single code base).

The web application is implemented using ASP.NET Core technology —
a free open source web platform and successor to ASP.NET developed by
Microsoft. The web application consists of a website and a REST API, with
the REST API processing the requests sent by the mobile application. The
web application is hosted on the Heroku cloud platform, and the virtualization
tool is Docker (a set of platform-as-a-service products that use OS-level
virtualization to deliver software in packages called containers). The database
uses Post-greSQL (an open source relational database that supports multiple
data types, transactions, encryption, regular expressions, etc.).

Figure 6 shows a diagram of the database schema.

 Images FH Places FFF AspNetUsers
1z d 1§ d g Id
) Created rec Title rec Userhlame
g LastUpdated RBC Description Aec NormalizedUserName
123 Placeld 123 Latitude ABC Email
Bytes 123 Longitude rec MormalizedEmail
*.", |123 Mainlmageld [ EmailConfirmed
= Pate ABC ShortDescription B PasswordHash
RBE LanguageCode RBE SecurityStamp
i b Rec Address Ree ConcurrencyStamp
123 TransitMode | 1swerkingOnNationalHolidays | |aoe PhoneNumber
123 FirstPeintld 8- 123 NotWorkingDays [+ PhoneNumberConfirmed
123 SecondPointld 123 NormalPrice [ TwoFacteorEnabled
123 TimelnSecond [ IsOkForRain @ LockoutEnd
123 DistancelnMeters [ 1sOkForSnow [+ LockoutEnabled
123 Rating 123 AccessFailedCount
| 123 RatingCount "
L7 |Aec Email
» REC Phone
£ NotWorkingDate 9 EndTime
&) StartTime
1% 14
) TakingTime
D Date ) WeekendEndTime
123 Placeld #) WeekendStartTime

Figure 6. Database schema diagram

The following tables are used:

e The Images table stores the photos of the tourist sites (stored as byte
arrays in the database).

e The Paths table contains the distance between two tourist sites for a
given mode of transport.

16



e The NotWorkingDate table stores the dates during which the site is
not working.

e The Places table stores information about the tourist sites. The
AspNetUsers table stores information about the users.

Flutter was used to create the mobile application on the client side —
allowing the creation of a platform-independent application, which means
that after development, there is support for Android for iSO. The main reason
for choosing Flutter is that it is owned by Google and is supported by the
company. An ASP.NET Core MVC application with Blazor was used to
create the website on the client side. Blazor is compiled to Web Assembly,
which is executed on the client's web browser. The mobile application and
the website will share a large part of the logic, which will be written in the
C# programming language. The two applications address a web application
that stores data about the user and tourist objects. The website also contains
an additional part aimed at allowing the administration of users and objects
by the user, with the role of administrator.

The server part of the tourist guide consists of a web application, a
database, and a Java REST application with the Jason framework. The web
application uses ASP.NET Core technology to implement a REST
application that stores and administers data about users and objects and makes
requests to the Jason environment to prepare individual tourist plans.
PostreSQL is used as a database. — an open source relational database. The
Jason environment is integrated with the Spark library, through which the
REST application is implemented. The components of the tourist are:

e Planning Agents — When a new traveler starts using the mobile app,
they are assigned a planning agent. The primary task of the planning
agent is to create a tour guide agent that is specifically tailored to the
traveler’s needs.

e Tour Guide Agents — are responsible for all aspects of trip planning,
including gathering information, generating plans, monitoring the
user’s time and location, and adjusting plans as needed. They use
the Jason Framework to manage their beliefs, desires, and
intentions, which allows them to adapt their plans based on various
factors.

e Information Collection — The tour guide agent collects all the
necessary data for trip planning using various RESTful API
services. This includes data related to tourist attractions and weather
conditions. The agent uses this data to make informed decisions and
provide appropriate recommendations.

17



e Mobile App — serves as the primary interface for the user to interact
with the tour guide agent. Through the mobile app, users can enter
their preferences, such as budget, time frame, and distance
constraints. They can also review the generated travel plan, provide
feedback, and request changes.

e Plan Generation — Based on the user’s preferences and real-time data
collected from various API services, the tour guide agent creates an
initial travel plan that takes into account the user’s constraints and
factors, such as tourist attractions, accommodations, meals, and
transportation.

e  Weather Monitoring and User Location Tracking — The tour guide
agent continuously monitors weather conditions and the user’s
location using API services and GPS data from the user’s device.
This allows the agent to adjust the travel plan in real-time based on
changing weather conditions or the user’s movements.

e Plan Adjustment — The tour guide agent can adjust the travel plan
based on feedback, requests, or changes in real-time data from the
user. For example, if the user decides to extend their stay at a
particular location, the agent can change the plan to accommodate
this change, while also taking into account the user's preferences and
constraints.

In this system, the agent planner focuses on creating tour guide agents,
while the tour guide agents handle all aspects of trip planning and user
communication through the mobile application. The combination of Jason
Framework MAS and RESTful API services allows for the development of a
highly adaptive and personalized tour guide application that can respond to
changing conditions and user input, providing an optimal trip tailored to the
unique needs and preferences of each user.

A planner agent is an intelligent software object that coordinates and
manages tasks by creating, monitoring, and controlling other agents or
processes. Using reasoning and decision-making capabilities, planner agents
process incoming requests, allocate resources, and set goals for subordinate
agents. In multi-agent systems, planner agents play a key role in managing
complex tasks and achieving system goals by dynamically adapting to
changes in the environment and adjusting the behavior of individual agents
accordingly.

18



Google Maps
‘ WieatherAPl co

Map Service

Tourist Service

Aftractions Store

Agent Emvironment
Service

Figure 7. Service and Agent Architecture

By effectively orchestrating tasks and resources, scheduling agents can
improve the overall performance and resilience of the system. A segment of

the scheduling agent implementation is shown in Fig. 8.

+tourist(ID,X,Y,W,B,T):true
<- _print("HoB Typuct"),
create_agent(ID, "quide.as!")
-send(ID.tell.init(ID));
-send(ID.tell.aps(X,Y)),
-send(ID.tellweather(W));
-send(ID.tell.budaet(B));

<- print("duHuwW Ha rmaa");
Kill_agent(X).

Figure 8. Segment of the agent implementation program

A guide agent is an intelligent software object designed to assist users,

such as tourists, by providing personalized recommendations and plans based
19



on their preferences, constraints, and environmental factors. Using advanced
reasoning and decision-making capabilities, guide agents adapt to dynamic
environments and tailor their guidance to create a satisfying experience for
users. In multi-agent systems, guide agents interact with other agents, such as
planning agents, to coordinate and efficiently perform tasks. By leveraging
their knowledge base and adapting to real-time changes, guide agents provide
a high level of personalization, improving the user experience and providing
valuable assistance in various areas. Figure 9 shows a code fragment
describing a Jason guide agent. This code fragment describes a Jason guide
agent that assists tourists by creating personalized plans based on the
information provided.

@init[atomic)

+int(ID): toue

<- jpif(ID)

// Hoeo mecTononoxexiue.
+gRs(X.Y): tue,

<- gps(X,Y)

*vieather(W): trug

<- weatbeo(W)

+budgel(B): tue

<- hudgel(B).

+time(T): tue

<- time(T)

+sladGuide(1D): tue

<- stariGuide(ID);

'createllan.

1/ 3aBbpweare Ha TYPUCTUYECKMA NNAH UNK BPEME
+Hinish(X): tue
<-.send(RlansriellinishPlang (X))
+¥ISit(A): tue

<- Visit(A).

+checkTime(T) e

< aslivstlanAcsordingTime T).
+changeRitection(X,Y) tue

<- adsiPlanAceordingirestion(X, ).
+change\eatheW) tue

< agiusiPlanAcsording}ieather(V).
+Iggeateplantmie

< crealeRlan.

Figure 9. A code snippet describing a tour guide agent in Jason

20



The multi-agent travel guide, powered by Rasa, Jason, ChatGPT, and the
.NET 6 REST API, is a testament to the symbiotic relationship between
technology and tourism, not only disseminating information but also
fostering engagement, providing not only directions but also cultural
exploration of Gabrovo. The latest version of the app continues to develop a
mobile app as a multi-functional travel guide system designed to offer
travelers a comprehensive experience when exploring Gabrovo. The app
offers a wide range of features, including navigation, information, and local
resources, but the integration of a chatbot and voice bot enhances its
usefulness. The app serves as a versatile tool that meets multiple traveler
needs. It encompasses functionalities such as navigation assistance, event
planning, local cuisine recommendations, and real-time updates on
attractions and events. Users can access a wealth of information about
Gabrovo’s history, culture, and traditions through an intuitive and easy-to-
use interface.

The latest version of the app includes a chatbot and voice bot as valuable
additions to the mobile app, offering a conversational layer that seamlessly
integrates with the broader app functionalities. These Al-powered agents act
as responsive and informative companions, enriching the traveler’s
experience with personalized interactions. When users access specific menus
in the app, it automatically opens a conversation mode. This mode provides
a set of features and information about Gabrovo and its attractions. Travelers
can then initiate inquiries, seek recommendations, or engage in casual
dialogue to improve their understanding of the region.

The system uses two advanced conversational Al technologies, Rasa and
ChatGPT, in an orchestrated manner. When a user initiates a conversation or
query, the system first consults Rasa for intent recognition and dialog
management. If Rasa determines that the user’s query cannot be adequately
answered, it gracefully switches to a fallback strategy by invoking the
ChatGPT API. Rasa Open Source is an open source conversational Al
platform that allows you to understand and conduct conversations, as well as
connect to messaging channels and third-party systems through a set of APIs.
It provides the building blocks for creating virtual (digital) assistants or
chatbots. Training Rasa models to conduct intelligent conversations is a key
aspect of the multi-agent travel guide. To achieve this, we use the standard
Rasa REST API for training and inference, but our unique architecture
includes a custom-built Flask REST API to facilitate communication with
Rasa agents, each of which is loaded with separate models tailored for
different purposes. Initial activities involve training Rasa models, a critical
step in ensuring that the chatbot and voice bot are well-prepared to effectively

21



engage users. Rasa’s universal framework allows for fine-tuning of models
for precise intent recognition, object extraction, and dialogue management.
This extensive training process enables agents to understand a wide range of
user inputs, ranging from general queries about Gabrovo to highly specific
questions related to individual attractions.

The core of the architecture is based on a custom Flask REST API,
meticulously developed to organize communication with Rasa agents. This
API serves as a central hub through which user requests, queries, and
interactions are routed to the appropriate Rasa model, providing a
contextually relevant and accurate response. Furthermore, the Flask REST
API seamlessly communicates with the .NET 6 REST API, further enhancing
the capabilities of the system.

The code used defines a Flask web application that serves as a
communication bridge between a custom application and Rasa chatbot agents
(Fig. 10). This code defines a Flask web application that serves as a
communication bridge between your custom application and Rasa chatbot
agents. It initializes and manages Rasa agents for various scenarios and
allows you to send messages to these agents to generate responses. The code
provides a RESTful API using Flask to initialize and interact with Rasa
chatbot agents for various scenarios. It allows you to send messages to these
agents and retrieve their responses, making it a key component of your multi-
agent travel guide system. The multi-agent travel guide uses SQL Server as a
reliable solution for storing Rasa models. The table structure adopted for this
purpose consists of two main elements: model headers and the corresponding
physical disk paths. This structured approach to model storage increases
efficiency, scalability, and reliability, contributing to an improved user
experience. Essentially, this code represents the key interaction between our
travel guide app and the OpenAl GPT-based chatbot. It allows users to
seamlessly search for information, ask questions, and engage in meaningful
dialogues about Gabrovo and its attractions. This interaction is a key element
of our multi-agent travel guide, enriching the user experience by providing
informative and contextually relevant answers.

22



import rasa.core.agent

Trom wallress inport e

def create.apn(test.confio=tone):

apn = Elask__name_)

agents = dick)

@app.route{ initialize/<int:scenario_id=', methada=POSTT)
asyne daf initializelsrenano.d):

# YuwneHo npe3anucBaHeE Ha HaI:TpEII:\KaTa Ha MOgena B KOHdJHI";paL]MﬂTa
Ha Kpaﬁﬂara TOYKA Zacera

sndegint. senfig.mods! = Mong,

agenisisaenano.id] = awail rasa.cee.anrnllead.asent

madelnath = nadelnath,

endogints. = sndpaint.cenia)

refwn ", 204

@app route( /send-message/=string conversation_jd=/<int:scenario_id=",
metheds=[POSTY)

asyne. def seod.messaos(crnsrsaiion.dd, seenari.id):

Message = requsst.ast jsonOlmessans]

if spenario.id et i ageniskeval):

redum. ", 403 esulis = 1

Igspeoses = awell  agenisissenano.idl handleutextimessags.  Nans
Sonyersation. iy

Tor [ER0ANGE 0. [ESDANSES"

i "text” . espeose:

resulis.appendiesonnsel textT)

retum sonify results)

Lgium. ana,

SEIVE(CEAle..ADRD, hst="Tasa logal”, po=8050)

Figure 9. A code snippet describing a tour guide agent in Jason

In summary, the approach used integrates state-of-the-art technologies,
with the inclusion of Rasa for intelligent chatbot functionality and the
integration of ChatGPT for dynamic and context-aware conversations. The
foundation of the system is Jason, a robust agent-based framework that plays

23



a key role in organizing interactions and delivering highly personalized user
experiences.

Notable aspects of the created system include the implementation of a
.NET 6 REST API to facilitate seamless communication, allowing Jason to
interact with Rasa and ChatGPT. The critical role of SQL Server for the
efficient management of model titles and physical locations is also
highlighted, which contributes significantly to the speed and reliability of our
travel guide.

The system adheres to a proactive approach, initiating conversations
based on the user’s GPS location, thus ensuring that travelers receive timely
and contextually relevant information about nearby attractions. Furthermore,
we seamlessly integrated a mobile application enriched with voice and
chatbot functionalities, improving user engagement and accessibility.

During the development process, we clarified the practical application of
Rasa and ChatGPT, demonstrating their key roles in facilitating
conversations, answering queries, and providing detailed information about
Gabrovo and its attractions.

Our multi-agent travel guide is a fusion of cutting-edge technology and
pragmatic utility, designed to offer travelers an intelligent and engaging
companion for exploring Gabrovo and the surrounding regions. By
leveraging the potential of LLM, NLU, and agent-based frameworks, we
created a system capable of responding to the diverse demands of tourists,
providing personalized and information-rich experiences.

24



CHAPTER FOUR: PROTOTYPE OF A MULTI-AGENT PLATFORM

TO SUPPORT OBJECTIVE AIR QUALITY ANALYSIS

The chapter demonstrates the possibilities of the developed architecture
and prototype of a personal tour guide to adapt to a different application area
— air monitoring in the Plovdiv region.

The proposed prototype is based on the fact that, due to various reasons
—such as geographical location, climate, and climate change, being the center
of vegetable production in Bulgaria, as well as the presence of a large copper-
zinc plant and a waste landfill in the nearby area — Plovdiv is among the most
polluted regions in Bulgaria. Air quality protection in Plovdiv is becoming
an increasingly pressing issue. Since air quality monitoring is a sensitive topic
for Plovdiv, there are often contradictory measurements, assumptions,
opinions, and publications regarding the reliability of data and the location of
monitoring instruments. The development of the prototype aims to create a
multi-agent platform that, given this context, will support objective air quality
analysis by:

e Reporting our measurements.

¢ Incorporating additional information from external sources.

e Comparing data and analyzing deviations and discrepancies.

The platform is hybrid, as it integrates methods from both symbolic and
subsymbolic Al. Its core consists of two personal assistants: one based on
symbolic Al methods, and the other on subsymbolic Al methods. In the
evolution of Al, these two main approaches have often been seen as
competing and mutually exclusive. However, the concept of integrated Al
has recently gained momentum, highlighting the benefits of combining
methods from both paradigms. For the purposes of developing the prototype,
we believe that a hybrid platform is a suitable solution.

The first assistant, designed to process our measurements and work with
our knowledge base, was developed as a BDI agent using JaCaMo
technology. The second assistant, tasked with incorporating external sources
and performing analysis, was implemented as a RaAct agent using
LangChain technology.

The ACreM (Air Credible Monitoring) platform is agent-centric, hybrid,
and regional [15]. It is agent-centric because the two main components of the
platform are implemented as agents. The platform is primarily intended for
use in the Plovdiv region. For this purpose, region-specific parameters have

25



been prepared that the platform uses in its work. The architecture of the
ACreM platform is given in Fig. 10.

Sensor DB

A

A

> AM Air Pollution Ontology

: H

1

User '

1

!

|

A 4

A
External
e o .
Sources

Figure 10. Architecture of the ACreM platform

A

Air Monitor (AM) is a personal assistant designed to identify and
localize various air quality anomalies based on our measurements. AM was
developed as a BDI (Beliefs-Desires-Intention) agent in the JaCaMo
development environment. The BDI model has its roots in the philosophical
tradition of understanding practical reasoning in humans. Practical reasoning
is action-oriented — the process of searching for what to do. Practical
deliberation is a matter of weighing conflicting considerations for and against
competing options, depending on the agent’s desires, concerns, or value
judgments. As a process, practical reasoning involves two distinct activities.
The first, known as deliberation, is to decide what state of affairs (goal) we
want to achieve. The second, called planning, is to decide how to achieve that
state of affairs (goal). One of the advantages of this architecture is the ability
to flexibly represent and work with the agent’s environment, which is
essential for our purposes. Another advantage is that AM works with proven
expertise in our area of interest (in this case air pollution). This circumstance
is at the same time a disadvantage of the ReAct agent, which works with free
text, created by non-professionals such as journalists, politicians and
interested citizens. Therefore, we believe that combining the two approaches
is an adequate way to achieve the goal of the study, namely the search for
reliable information about the state of the air in the city of Plovdiv. Fig. 11

26



shows the general architecture of AM, located in its working environment.
The diagram shows the main components of AM and its environment.

i AM i
1 1
1 1
1 1
R .
: Plan Library casoning Beliefs Base :
| Cycle 1
1 1
1 1
L, Femmmemmmememmmmememmmmmememmm————— R |
Control flow 1 Data_flow
P ittt e ettt T bttt .
: i
' Ontology Sensor DB :
1
: i
) 1
1
: |
) 1

Figure 11. AM architecture

The belief base is a discrete structure that models the agent's perception
of its environment. Individual beliefs are represented as predicates (in the
style of the logic programming language Prolog). The structure consists of
two basic components, static and dynamic. Any change in the belief base
(deletion or addition of a belief) triggers an actual event. This component is
updated at a time interval specified by us. An example segment of the belief
base is given in Fig. 12.

/* Beliefs Base - represents the agent's initial knowledge: the sensor values from the Sensor DB and from Air Pollution
Ontology. CO2 level in parts per million (ppm), as well as PM2.5 level in micrograms per cubic meter (ug/m3) */
sensor_value(co2, current_value).
sensor_value(pm25, current_value).
co2_threshold(1000).
pm25_threshold(15).
/¥ Initial goal causes the initial triggering_event to be generated, in this case to initialize and start the air quality
monitoring process */
!start_air_monitoring.

Figure 12. Example segment of the Belief Base

Two main repositories are located in the AM environment. The basic
knowledge for understanding and monitoring air quality is stored in an
ontology called Air Pollution Ontology, developed in accordance with the
global air quality guidelines of the World Health Organization, the Bulgarian

27



Environmental Executive Agency and the Environmental Monitoring System
of the Municipality of Plovdiv offer comprehensive information on air quality
in Bulgaria, including measurements of key pollutants such as PM10, PM2.5,
SOz, Os, CO and NO, available on their official website. The specified data
serve as a basis for drawing conclusions about air quality by comparing it
with dynamically entered data in the databases. The second repository is a
relational database that stores our measurements. The databases contain the
dynamic data obtained from different 10T nodes or from real-time data
entered by the platform users. The data flow starts with its beginning —
measurements performed by devices in the sensor group (Fig. 13).

The recorded values are then read and consolidated into a single data
packet by a dedicated controller. This controller acts as an intermediary,
adapting between the various sensor devices, each with its own specific
interface, and the wider system. At regular intervals (typically every 1 to 5
minutes), the controller transmits the data packet to the data endpoint of the
software system. Upon arrival, the data packet is directed to a data
transformation module. Its main function is to split the data packet into a
series of individual measurements, each associated with its respective value
and metric. The implementation of the data transformation module uses Node
Red streams. For each measurement, the data transformation module initiates
a discrete REST request to the OGC SensorThings API, which in turn stores
the measurement in the data store. The Fraunhofer IOSB implementation
serves as the backbone for the SensorThings API. PostgreSQL, enhanced
with the TimescaleDB extension, serves as the designated data store. Once
the data is securely stored in the data store, it can be retrieved using various
SensorThings API reading methods. These methods cover a wide range of
filters, allowing for detailed customization of the retrieved data. Applications,
such as Grafana, can use the SensorThings API reading methods to monitor,
visualize, or export data. Grafana, for example, has a convenient pre-
configured data source for seamless integration with the SensorThings API.

28



Data Transformation
Data Endpoint
Data Export
Sensor v

Group RJ45 | WiFi
Visualization &
Monitoring

RS-|485 4|7
Figure 13. Architecture Components

OGC SensorThings API

SDI12 <<device>>
Controller

Data Storage

The interaction of AM with its environment is based on the concept of
A&A (Artifacts and Agents). Air Monitor Copilot (AMCo) is a copilot agent
with ReAct architecture, which we use to explore and evaluate air pollution
data in the Burgas region from external sources. The ReAct framework uses
a combination of task decomposition, reasoning loops, and multiple problem-
solving tools. ReAct agents from the LangChain library can support a
complete request processing process. The introduction of the platform aims
to contribute to the objective assessment of air quality and, therefore, to
effective decision-making. In the current version, AMCo presents the results
in an unstructured format (text), which is easy to read by a human user. In
future interactions with AM, the data exchange should also be in a structured
or semi-structured (e.g. JSON) format.

29



CONCLUSION

The results of the research presented in this dissertation can be briefly

summarized as follows:

e  Aconcept, model, and architecture of a basic tourist guide have been
developed.

e A working prototype of a tourist guide has been created.

e The possibilities for adapting the prototype for real applications in
the main application area (tourism) and in a different application
area (environmental protection) have been demonstrated.

In addition, the following conclusions can be drawn from the results of

the study:

e Regarding the features of the virtual tourist guide - the main
approach in creating virtual tourist guides is to create a system that
will facilitate the mechanism of traditional information search and
ticket booking/purchase.

e Regarding the model of the personal tour guide and basic
functionalities - the virtual tourist guide is a developed mobile
application, which is available for mobile devices with the Android
operating system and a website (https://exploring-gabrovo.com/).
The system consists of several parts: a mobile application, a public
website, and a content management panel.

e Regarding the guidelines for future development of the virtual
tourist guide - the created tourist guide will support the work of the
tourist information center in Gabrovo, therefore it is necessary to be
directed at the individual tourist and provide him with the
opportunity to compile an individual optimal route, according to
personal preferences. The virtual tour guide must adapt to changing
environmental conditions, such as changing weather conditions, the
tourist's deviation from the set route, traffic jams on the road, etc.

30



LIST OF PUBLICATIONS CITED IN THE DISSERTATION

of llia lliev Nedelchev

PHD STUDENT AT THE DEPARTMENT OF COMPUTER

1.

SYSTEMS

Stoyanov, S.; Doychev, E.; Stoyanova-Doycheva, A.; Tabakova-
Komsalova, V.; Stoyanov, I.; Nedelchev, I. A Regional Multi-
Agent Air Monitoring Platform. Future Internet 2025, 17, 112.
https://doi.org/10.3390/fi17030112

I. Nedelchev, V. Tabakova-Komsalova, I. Stoyanov, S. Stoyanov,
V. Ivanova and T. Kazashka, "Supporting Digitization of a
Cultural and Historical Heritage Platform," 2024 International
Conference Automatics and Informatics (ICAl), Varna, Bulgaria,
2024, pp. 490-493, doi: 10.1109/ICAI163388.2024.10851643.

31



REFERENCED LITERATURE

[1] Boxwunosa, M. Jluue, T. Tomopoa, JI. Ilanos, II. T'eopruesa, K.
C’beeMeHHI/I HU3MEPCHU Ha  YIPaBJICHUECTO Ha TYypuUCTUYECKa
necTuHanusa bearapus. AnmaHax HayyHU u3ciensaHus, Tom 27, 2019,
c. 7-22

[2] Kanwel, S. Linggiang, Z. Asif, M. Hwang, J. Hussain, A. Jameel, A. The
Influence of Destination Image on Tourist Loyalty and Intention to Visit:
Testing a Multiple Mediation Approach. Sustainability 2019, 11, 6401.
https://doi.org/10.3390/su11226401

[3] Szostak, D. Spatial and Infrastructural Conditions of Functioning of the
Contemporary Tourism Market — Analysis of Selected Issues. European
Research Studies Journal. Volume XXVI, Issue 2, 2023, pp. 337-347

[4] Pai, C. Y. Liu, S. Kang, A. Dai. The role of perceived smart tourism
technology experience for tourist satisfaction, happiness and revisit
intention. Sustainability, 12 (16) (2020), p. 6592, 10.3390/5u12166592

[5] Pamymnos, H. Curypuoctr 4.0. Codusi, HaydHOTEXHHYECKH CBIO3 TI0
MaiHocTpoene, 2019, ¢. 72

[6] AnuronoBa, K. BanoBa, I1. PoGoTH3aIUATA M M3KYCTBEHHST HHTEIEKT —
HOB MOJCIT Ha CBTPYAHHUUCCTBO I/I/I/IJ'II/I BSaHMOﬂeﬁCTBHe MCXKIOY
MallMHUTE W XopaTa Ha paboTHOTO MscTo. YoBemku pecypcun &
Texnonoruu. bp. 1, 2021, c. 65

[7] Alberto M. Flutter Complete Reference: Create beautiful, fast and native
apps for any device. Independently published, 2020. p. 5-10

[8] Dino E. Programming ASP.NET Core, First edition, fast and native apps
for any device. Microsoft Press, 2018. p. 15-16

[9] Matthias B. RESTful APl Design: 3 (API-University Series).
CreateSpace Independent Publishing Platform, 2016. p. 50-53

[10]Nigel P. Docker Deep Dive: Zero to Docker in a single book.
Independently published, 2020. p. 20-21

[11]Hans-Jurgen S. Mastering PostgreSQL 13: Build, administer, and
maintain database applications efficiently with PostgreSQL 13, 4th
Edition. Packt Publishing, 4th ed. Edition, 2020. p. 10-13

[12]1. Nedelchev, V. Tabakova-Komsalova, I. Stoyanov, S. Stoyanov, V.
Ivanova and T. Kazashka, "Supporting Digitization of a Cultural and
Historical Heritage Platform,” 2024 International Conference
Automatics and Informatics (ICAI), Varna, Bulgaria, 2024, pp. 490-493,
doi: 10.1109/1CAI163388.2024.10851643.

[13] Rafalimanana, H. J. L. Razafindramintsal, S. Cherrier, T. Mahatody, L.
Geogrge, V. Manantsoa, Jason-RS, a Collaboration between Agents and
an loT Platform, International Workshop

32



[14] Soliman, M. Guetl, V. Evaluation of intelligent agent frameworks for
human learning. 14th International Conference on Interactive
Collaborative Learning, Piestany, Slovakia, 2011, pp. 191-194, doi:
10.1109/1CL.2011.6059574.

[15] Stoyanov, S.; Doychev, E.; Stoyanova-Doycheva, A.; Tabakova-
Komsalova, V.; Stoyanov, |.; Nedelchev, I. A Regional Multi-Agent Air
Monitoring  Platform.  Future  Internet 2025, 17, 112
https://doi.org/10.3390/fi17030112

33



