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INTRODUCTION

GENERAL CHARACTERISTICS OF THE THESIS

This PhD considers generalizations of the Banach fixed point theorem related
to coupled fixed points, tripled fixed points, coupled best proximity points, and
their applications. The generalizations concern a weakening of the assumption for
the underlying space to be a uniformly convex Banach space by considering just a
reflexive Banach space. Another direction in the investigations is to consider not
only cyclic maps but also non-cyclic maps and semi-cyclic maps. In the context
of best proximity points, the error estimates are found for non-cyclic contractive
maps. Some results are obtained in the field of fixed points in partially ordered
metric spaces. A generalization of the Ekeland variational principle related to sets
generated by maps with the mixed monotone property is considered. A technique
is proposed for proving results on the existence of tripled fixed points for maps with
the mixed monotone property using a variational principle. Models are constructed
based on actual statistical data of oligopoly markets with three participants.

INTRODUCTION

Fixed point theorems, initiated by Banach’s Contraction Principle [8] has
proved to be a powerful tool in nonlinear analysis.

Fixed point theory of course entails the search for a combination of conditions
on a set X and a mapping T : X → X which, in turn, assures that T leaves at
least one point of X fixed, i.e. ξ = T (ξ) for some ξ ∈ X. Since its publication [8]
there is large number of applications and generalizations.

Notations, used in the thesis

We will denote the set of natural numbers by N and the set of real numbers by
R. With Latin capital letters A,B,C,U ,V ,X,Y ,Z, we will denote sets of arbitrary
structure. Usually, with the letters F ,G, H, and T , we will denote maps between
different sets. The constants that will appear in the contractive type inequalities
will be denoted by the small Greek letters α, β, γ, or the small first Latin letters
a, b, and c. The Greek letter δ will be used to denote the modulus of convexity.
We will denote by lowercase letters. x, y, z, w, u, v, t, ξ, η, ζ the elements of the
considered set. We will denote by ρ the metric function defining a distance in an
arbitrary set X, and by (X, ρ) we will denote a metric space, and we will denote
by (X, ∥ · ∥) a norm space. We prefer to use the notation ρ for the metric function
instead of d, because we will use d(U, V ) = inf{ρ(u, v) : u ∈ U, v ∈ V } for the
distance between the subsets U and V of some metric space (X, ρ). We denote
sometimes dist(U,V) = d(U, V ) or even dist(U,V) = d, just to fit some of the
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Fixed points in partially ordered metric spaces

formulas into the text field, as far as no confusion arises.
Whenever we consider a distance ρ in a normed space, we will assume that

ρ(x, y) = ∥x− y∥.
By X × Y , we will denote the Cartesian product of the sets X and Y , i.e.,

u = (x, y) ∈ X ×X if x ∈ X and y ∈ Y .

Definition 1. Let X be a set and T : X → X be a map. A point ξ ∈ X is
said to be a fixed point for T if there holds ξ = Tξ.

Fixed points in partially ordered metric spaces

We will denote by (X,≼) a partially ordered set and by (X, d,≼) a metric
space with a partial ordering.

Definition 2. ([29, 30]) Let (X,≼) be a partially ordered set. We say that a
map T : X → X is monotone if it is either order preserving, i.e., Tx ≼ Ty for all
x ≼ Y or order reversing, i.e., f(x) ≽ y for all x ≼ y.

Theorem 1. ([29]) Let (X, d,≼) be a partially ordered complete metric spaces
and T : X → X be a continuous, monotone map, such that there is α ∈ [0, 1) so
that the inequality

(1) ρ(Tx, Ty) ≤ αρ(x, y)

holds true for arbitrary x, y ∈ X, satisfying x ≽ y. A fixed point ξ ∈ X of T exists
if there is x0 ∈ X such that either x0 ≼ fx0 or x0 ≽ fx0.

The fixed point ξ will be unique if each pair of elements x, y ∈ X possesses a
lower bound or an upper bound.

The ideas of [29] were preceded in [23], where in partially ordered by a cone
normed space (X, ∥ · ∥) fixed points for monotone maps were investigated.

If inequality (1) is satisfied for all x, y ∈ X, without X being partially ordered
an removing all the additional assumptions, we get the Banach’s fixed points the-
orem, i.e., a unique fixed point for T exists.

Coupled fixed points in partially ordered metric spaces

The new notion, namely a coupled fixed point, has been introduced in [24].
Later on, results about coupled fixed points in partially ordered metric spaces have
been obtained in [23].
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INTRODUCTION

Definition 3. ([34]) Let A be a nonempty set, and F,G : A×A→ A be two
maps. If ξ = F (ξ, η) and η = G(ξ, η), then (ξ, η) ∈ A × A is said to be a coupled
fixed point for the ordered pair of maps (F,G) in A.

If G(x, y) = F (y, x), we get the classical definition for coupled fixed points
from [23, 24].

The mixed monotone property for a map F : X ×X → X have been general-
ized to a mixed monotone property for an ordered pair of maps F,G : X×X → X
in [7, 25].

Definition 4. ([7, 25]) Let (X,≼) be a partially ordered set and let us define
F,G : X ×X → X. It is said (F,G) satisfies the mixed monotone property, pro-
vided that F (x, y) and G(x, y) are monotone nondecreasing in x and are monotone
nonincreasing in y, that is, for all x, y ∈ X,

F (x1, y) ≼ F (x2, y) and G(x1, y) ≼ G(x2, y), provided that x1 ≼ x2

and

F (x, y1) ≽ F (x, y2) and G(x, y1) ≽ G(x, y2), provided that y1 ≼ y2.

If G(x, y) = F (y, x), we get the classical definition for mixed monotone prop-
erty from [23, 24].

The next theorem is a generalization of the results from [24].

Theorem 2. ([7]) Let (X, ρ,≼) be a complete metric space with a partial
ordering, let F,G : X × X → X be such that (F,G) has the mixed monotone
property, and there is α ∈ [0, 1) such that

(2) ρ(F (x, y), F (u, v)) + ρ(G(x, y), G(u, v)) ≤ α(ρ(x, u) + ρ(y, v))

holds for every x ≽ u, y ≼ v.
Let one of the following hold:

2.a) F and G are continuous maps

2.b) for any convergent sequence limn→∞(xn, yn) = (x, y), (xn, yn) ∈ X ×X

� if (xn, yn) ≼ (xn+1, yn+1) then (xn, yn) ≼ (x, y)

� if (xn, yn) ≽ (xn+1, yn+1) then (xn, yn) ≽ (x, y).

If there are x0, y0 ∈ X so that one of the following holds

� x0 ≼ F (x0, y0) and y0 ≽ G(x0, y0),

7



Cyclic maps

� x0 ≽ F (x0, y0) and y0 ≼ G(x0, y0),

then, a coupled fixed point (ξ, η) ∈ X ×X exists.
If each pair of components x, y ∈ X also has a lower bound or an upper bound,

then

� (ξ, η) is a unique coupled fixed point

� if G(ξ, η) = F (η, ξ) then ξ = η.

If G(x, y) = F (y, x), we get the classical result from [24].

Cyclic maps

Definition 5. ([26]) Let X be arbitrary set and A,B ⊂ X. A map T :
A ∪B → A ∪B is called a cylic map if T : A→ B and T : B → A.

The first result about fixed points for cyclic maps is obtained in [26].

Theorem 3. ([26]) Let A and B be two nonempty closed subsets of a complete
metric space, and suppose T : A ∪ B → A ∪ B be a cyclic map, such that there
holds

(3) ρ(Tx, Ty) ≤ αρ(x, y), for all x ∈ A, y ∈ B,

where α ∈ [0, 1). Then T has a unique fixed point in A ∩B.

A direct consequence of the last theorem is that the sets A and B have a
nonempty intersection. The results from [26] have been added in [28] with the
error estimates and results for Kannan maps, Chaterjea maps, and Zamfirescu
maps.

Unifromly Convex Banach Space

Let (X, ∥ · ∥) be a normed space and denote BX = {x ∈ X : ∥x∥ ≤ 1},
SX = {x ∈ X : ∥x∥ = 1} the closed unit ball and the unit sphere, respectively.

Definition 6. ([12, 19]) Let (X, ∥ · ∥) be a Banach space. For every ε ∈ (0, 2]
we define the modulus of convexity of ∥ · ∥ by

δ(X,∥·∥)(ε) = inf

ß
1−

∥∥∥∥x+ y

2

∥∥∥∥ : x, y ∈ BX , ∥x− y∥ ≥ ε

™
.

The norm is called uniformly convex if δ(X,∥·∥)(ε) > 0 for all ε ∈ (0, 2]. The space
(X, ∥ · ∥) is then called a uniformly convex Banach space.
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INTRODUCTION

When no confusion can arise we will denote δ(X,∥·∥) by δ.

Definition 7. ([13], p. 42) A Banach space (X, ∥ · ∥) is said to be strictly
convex if x = y, provided x, y ∈ X are such that ∥x∥ = ∥y∥ = 1 and ∥x+ y∥ = 2.

Best Proximity Points

If a map T is a cyclic one, then it is possible that there is no a fixed point.
An idea to alter the notion of fixed point is proposed in [18], where the equality
x = Tx is replaced by an optimization problem min{ρ(x, Tx) : x ∈ A∪B}, and T
being a cyclic map.

Definition 8. ([18]) Let (X, ρ) be a metric space, A and B be subsets of X
and T : A ∪ B → A ∪ B be a cyclic map. We say that the point x ∈ A is a best
proximity point of T in A, if ρ(x, Tx) = dist(A,B).

Definition 9. ([18]) Let (X, ρ) be a metric space, A and B be subsets of X.
We say that the map T : A ∪ B → A ∪ B is a cyclic contraction map, if it is a
cyclic map and satisfies the inequality

(4) ρ(Tx, Ty) ≤ αρ(x, y) + (1− α)dist(A,B)

for some α ∈ (0, 1) and every x ∈ A, y ∈ B.

Let us say that the constant α ̸= 0, because if not than (4) reduces to
ρ(Tx, Ty) ≤ dist(A,B) which can hold just for some particular easy cases.

Theorem 4. ([18]) Let A and B be nonempty closed and convex subsets of a
uniformly convex Banach space (X, ∥ · ∥). Suppose T : A ∪B → A ∪B be a cyclic
contraction map, then there exists a unique best proximity point x of T in A and
Tx is a unique best proximity point of T in B.

Error Estimate of Best proximity points in Uniformly convex Banach
spaces

If (X, ∥ · ∥) is a uniformly convex Banach space, then δ(X,∥·∥)(ε) is a strictly
increasing function. Therefore if (X, ∥ ·∥) is a uniformly convex Banach space then
there exists the inverse function δ−1 of the modulus of convexity. If there exist
constants C > 0 and q > 0, such that the inequality δ(ε) ≥ Cεq holds for every
ε ∈ (0, 2] we say that the modulus of convexity is of power type q.
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Reflexive Banach Spaces

Theorem 5. ([33]) Let A and B be nonempty, closed and convex subsets of
a uniformly convex Banach space (X, ∥ · ∥), and let there exist C > 0 and q ≥ 2,
such that δ∥·∥(ε) ≥ Cεq. Let T : A∪B → A∪B be a cyclic contraction map. Then

5.i) there exists a unique best proximity point ξ of T in A, Tξ is a unique best
proximity point of T in B and ξ = T 2ξ = T 2nξ

5.ii) for any x0 ∈ A the sequence {x2n}∞n=1 converges to ξ and {x2n+1}∞n=1 con-
verges to Tξ, where xn+1 = Txn, n = 0, 1, 2, . . .

5.iii) a priori error estimate holds

(5)
∥∥ξ − T 2nx0

∥∥ ≤ ∥x0 − Tx0∥
1− q

√
α2

q

 
∥x0 − Tx0∥ − d

Cd

(
q
√
α
)2n

5.iv) a posteriori error estimate holds

(6)
∥∥T 2nx0 − ξ

∥∥ ≤ ∥T 2n−1x0 − T 2nx0∥
1− q

√
α2

q

 
∥T 2n−1x0 − T 2nx0∥ − d

Cd
q
√
α,

where d = dist(A,B).

Reflexive Banach Spaces

Definition 10. ([19]) Let (X, ∥ · ∥) be a normed space. By X∗ we denote
the vector space of all continuous linear functionals on X, endowed with the norm
∥f∥∗ = sup{|f(x)| : x ∈ BX}, called the canonical dual norm. The space (X∗, ∥·∥∗)
is called the dual space of X.

The space X∗∗ is the dual space of X∗. The mapping π : X → X∗∗ defined by
π(x) = ψx0

(f) = f(x0) maps the set X onto some subset π(X) ⊆ X∗∗. The map π
is called the natural mapping of X onto X∗∗.

Definition 11. ([19]) Let (X, ∥ · ∥) be a normed space. If π(X) ≡ X∗∗, then
X is called reflexive.
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Preliminaries

Best Proximity Points in Reflexive Banach Spaces

The first result about existence and uniqueness of best proximity points for
cyclic maps T : A ∪B → A ∪B in reflexive Banach space is in [6].

Theorem 6. ([19]) A sequence {xn}∞n=1 of elements in a normed space (X, ∥ ·
∥) is weakly convergent to an element x ∈ X if and only if the numerical sequence
{f(xn)}∞n=1 converges to f(x) for every f ∈ X∗ and is denoted by w lim

n→∞
xn = x.

Definition 12. ([19]) Let (X, ∥·∥) be a normed space. A set A ⊂ X∗ is called
a weakly closed one if for whenever thereholds w lim

n→∞
xn = x, with xn ∈ A, then

there holds x ∈ A.

Theorem 7. Let A and B be nonempty weakly closed subsets of a reflexive
Banach space X and let T : A ∪ B → A ∪ B be a cyclic contraction map. Then
there exists (x, y) ∈ A×B such that ∥x− y∥ = dist(A,B).

Let us say that although we assume the sets to be weakly closed, we can not
verify that y = Tx.

Definition 13. Let A and B be nonempty subsets of a normed space (X, ∥·∥),
T : A ∪ B → A ∪ B be a cyclic map. We say that T satisfies the proximal
property if ∥x− Tx∥ = dist(A,B) holds whenever there hold w limn→∞ xn = x and
limn→∞ ∥xn − Txn∥ = dist(A,B).

Theorem 8. Let A and B be nonempty subsets of a reflexive Banach space
(X, ∥ · ∥) such that A is weakly closed and let T : A ∪ B → A ∪ B be a cyclic
contraction map. Then there exists x ∈ A such that ∥x − Tx∥ = dist(A,B),
provided one of the following conditions is satisfied:

8.a) T is weakly continuous on A

8.b) T satisfies the proximal property.

If in addition (X, ∥ · ∥) be a strictly convex, then the best proximity point x is
unique and there holds T 2x = x.

Noncyclic Maps

Definition 14. ([1]) Let X be arbitrary set and A,B ⊂ X. A map T :
A ∪B → A ∪B is called a noncylic map if T : A→ A and T : B → B.

Now let T : A ∪ B → A ∪ B be a noncyclic mapping. We can consider the
following minimization problem: min{ρ(x, Tx) : x ∈ A}, min{ρ(y, Ty) : y ∈ A},
and min{ρ(x, y) : (x, y) ∈ A×B}.
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Best Proximity Pair for a Noncyclic Map

Best Proximity Pair for a Noncyclic Map

Definition 15. ([1]) Let (X, ρ) be a metric space and A,B ⊂ X and T be a
noncyclic map. An ordered pair (ξ, η) ∈ A × B is called be a best proximity pair
of fixed points for the noncyclic mapping T provided that ξ = Tξ, η = Tη, and
d(ξ, η) = dist(A,B).

Some times a best proximity pair for the noncyclic mapping T is called an
optimal pair of fixed points of the noncyclic map T .

A natural generalization seem to be the search for conditions that guarantee
existence and uniqueness of best proximity pairs for noncyclic maps.

Definition 16. ([22]) Let (X, ρ) be a metric space and A,B ⊂ X. A non-
cyclic map T : A∪B → A∪B is called a noncyclic contraction map if there exists
α ∈ [0, 1) so that the inequality ρ(Tx, Ty) ≤ αρ(x, y) + (1− α)dist(A,B) holds for
every x ∈ A and y ∈ B.

Theorem 9. ([20]) Let A and B be two closed convex subsets of a strictly
convex and reflexive Banach space (X, ∥ · ∥). Suppose that T : A ∪ B → A ∪ B is
a noncyclic contraction map. Then T has a best proximity pair.

Ordered Pairs of Cyclic Maps

Definition 17. ([34]) Let Ax, Ay, Bx and By be nonempty subsets of X. Let
F : Ax × Ay → Bx, f : Ax × Ay → By, G : Bx × By → Ax and g : Bx × By → Ay.
For any pair (x, y) ∈ Ax × Ay we define the sequences {xn}∞n=0 and {yn}∞n=0 by
x0 = x, y0 = y and

x2n+1 = F (x2n, y2n), y2n+1 = f(x2n, y2n)
x2n+2 = G(x2n+1, y2n+1), y2n+2 = g(x2n+1, y2n+1)

for all n ≥ 0.

Lower semi-continuous maps

Let (X, ρ) be a metric space. Following [10] an extended real valued function
T : X → (−∞,+∞] on X is called lower semicontinuous (for short l.s.c) if {x ∈
X : f(x) > a} is an open set for each a ∈ (−∞,+∞]. Equivalently T is l.s.c if
and only if at any point x0 ∈ X there holds lim inf

x→x0

f(x) ≥ f(x0). A function T is

called to be proper function, provided that T ̸≡ +∞.
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Chapter I

Ekeland’s Variational Principle and Fixed Point Results

Ekeland proved a variational principle in [16]. In a series of articles he enriches
the results. Later he presented a more concise proof [17], which technique we will
use. In the same article [17], the Banach’s fixed point theorem is proven with the
help of the variational principle.

Theorem 10. ([17]) Let (X, ρ) be a complete metric space, and T : X →
R∪{+∞} be a proper l.s.c. function, bounded from below. Let ε > 0 be given, and
a point u0 ∈ X be such that T (u0) ≤ infv∈X T (v) + ε.

Then there exists some point v0 ∈ X such that T (v0) ≤ T (u0), ρ(u0, v0) ≤ 1,
and for every w ∈ X different from v0 holds the inequality T (w) > T (v0)−ερ(w, v0).

Chapter I
Coupled Best Proximity Points for Cyclic, Semi-Cyclic, and Non-Cyclic
Maps in Banach Spaces

The results in this chapter are based on the publications of the author [2, 4].

Coupled Best Proximity Points for Cyclic Maps in Reflexive Banach
Spaces

We will start first with the results from [4].

Definition 18. Let (X, ∥ · ∥) be a Banach space and U, V ⊂ X be sub-
sets. We say that a map F : U × V → X is weakly continuous if for any
weakly convergent sequences {un}∞n=0 and {vn}∞n=0, un ∈ U and vn ∈ V there holds
w limn→∞ F (un, vn) = F (u, v), where u = w limn→+∞ un and v = w limn→+∞ vn.

.

Definition 19. Let (X, ∥ · ∥) be a Banach space and Ax, Ay, Bx, By ⊂ X be
subsets and F : Ax × Ay → Bx, f : Ax × Ay → By. We say that the pair of maps
(F, f) satisfies the proximal property if for any weakly convergent sequences {un}∞n=0

and {vn}∞n=0, un ∈ Ax and vn ∈ Ay such that u = w limn→+∞ un, v = w limn→+∞ vn
whenever there hold

lim
n→+∞

∥un − F (un, vn)∥ = dist(Ax, Bx) and lim
n→+∞

∥vn − f(un, vn)∥ = dist(Ay, By),

then hold ∥u− F (u, v)∥ = dist(Ax, Bx) and ∥v − f(u, v)∥ = dist(Ay, By).
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Coupled Best Points for Cyclic Maps in Reflexive Banach Spaces

Definition 20. Let (X, ρ) be a metric space, Ax, Ay, Bx, By ⊂ X be non-
empty, proper subsets, F : Ax × Ay → Bx, f : Ax × Ay → By. An ordered pair
(x, y) ∈ Ax × Ay is called a coupled best proximity point of (F, f) in Ax × Ay if
ρ(x, F (x, y)) = dist(Ax, Bx) and ρ(y, f(x, y)) = dist(Ay, By).

Definition 21. Let Ax, Ay, Bx, and By be non-empty subsets of a metric
space (X, ρ), F : Ax × Ay → Bx, f : Ax × Ay → By, G : Bx × By → Ax

and g : Bx × By → Ay. The ordered pair of ordered pairs ((F, f), (G, g)) is said
to be a cyclic contraction ordered pair if there are reals α, β, γ, δ ≥ 0, so that
max{α + γ, β + δ} < 1 and there holds the inequality

(7)
S = ρ(F (x, y), G(u, v)) + ρ(f(z, w), g(t, s))

≤ αρ(x, u) + βρ(y, v) + γρ(z, t) + θρ(w, s)
+(1− (α + β))dist(Ax, Bx) + (1− (β + θ))dist(Ay, By)

for any (x, y), (z, w) ∈ Ax × Ay and (u, v), (t, s) ∈ Bx ×By.

Definition 22. Let Ax, Ay, Bx and By be nonempty subsets of X. Let F :
Ax ×Ay → Bx, f : Ax ×Ay → By, G : Bx ×By → Ax and g : Bx ×By → Ay. For
any initial, arbitrary chosen (ξ, η) ∈ Ax×Ay, we define the sequences {ξn}∞n=0 and
{ηn}∞n=0 by ξ0 = ξ, η0 = η and

ξ2n+1 = F (ξ2n, η2n), η2n+1 = f(ξ2n, η2n),
ξ2n+2 = G(ξ2n+1, η2n+1), η2n+2 = g(ξ2n+1, η2n+1)

for all n ≥ 0.

Theorem 11. Let (X, ∥ · ∥) be a reflexive Banach space, Ax, Ay, Bx, By ⊂ X
be nonempty, proper, weakly closed sets of X, F : Ax×Ay → Bx, f : Ax×Ay → By,
G : Bx×By → Ax and g : Bx×By → Ay. Let ((F, f), (G, g)) be a cyclic contraction
of ordered pairs. Let there hold one of the following

11.a) F and f be weakly continuous on Ax×Ay and G and g be weakly continuous
on Bx ×By

11.b) (F, f) satisfies the proximal property.

Then (F, f) has a coupled best proximity point (ξx, ξy) ∈ Ax × Ay and (G, g)
has a coupled best proximity point (ηx, ηy) ∈ Bx ×By, i.e.,

∥ξx − F (ξx, ξy)∥ = dist(Ax, Bx), ∥ξy − f(ξx, ξy)∥ = dist(Ay, By)

and

∥ηx −G(ηx, ηy)∥ = dist(Ax, Bx), ∥ηy − g(ηx, ηy)∥ = dist(Ay, By).

14
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If, in addition (X, ∥·∥) is a strictly convex Banach space and Ax, Ay, Bx, By ⊂
X are convex subsets, then

ξx = G(F (ξx, ξy), f(ξx, ξy)), ξy = g(F (ξx, ξy), f(ξx, ξy))

and
ηx = F (G(ηx, ηy), g(ηx, ηy)), ηy = f(F (ηx, ηy), f(ηx, ηy)).

If Ax = Ay, Bx = By, f(x, y) = F (y, x) and g(x, y) = G(y, x), (X, ∥ · ∥) is a
strictly convex Banach space then the coupled fixed point (ξx, ξy) ∈ Ax×Ax satisfies
ξx = ξy.

Coupled Best Proximity Points for Semi-Cyclic Maps in Reflexive Ba-
nach Spaces

Definition 23. Let (X, ∥ · ∥) be a Banach space and U, V ⊂ X be subsets and
F : U × V → U , G : U × V → V . We say that the pair of maps (F,G) satisfies
the proximal property if for any weakly convergent sequences {un}∞n=0 and {vn}∞n=0,
un ∈ U and vn ∈ V such that u = w limn→+∞ un, v = w limn→+∞ vn whenever it
holds

lim
n→+∞

∥un −G(un, vn)∥ = dist(U, V ) and lim
n→+∞

∥vn − F (un, vn)∥ = dist(U, V )

there hold ∥u−G(u, v)∥ = ∥v − F (u, v)∥ = dist(U, V ).

Definition 24. Let A,B be subsets of a metric space (X, ρ). An ordered pair
of maps (F,G) F : A × B → A, G : A × B → B will be called a semi-cyclic
contraction if there exists α ∈ [0, 1/2), such that for any (x, y), (u, v) ∈ A × B
there holds the inequality

(8) ρ(F (x, y), G(u, v))− dist(A,B) ≤ α(ρ(x, v) + ρ(y, u)− 2dist(A,B)).

Theorem 12. Let (X, ∥ · ∥) be a reflexive Banach space and A,B ⊂ X, be
nonempty, proper, weakly closed sets, and F : A × B → A, G : A × B → B be a
semi-cyclic contraction. Let there hold one of the following

12.a) F and G are weakly continuous on A×B

12.b) (F,G) satisfy the proximal property.

Then there exists (ξ, η) ∈ A×B, which is a best proximity point of (F,G).
If in addition (X, ∥ · ∥) is a strictly convex Banach space and A,B ⊂ X

are convex subsets, then ξ = F (F (ξ, η), G(ξ, η)), η = G(F (ξ, η), G(ξ, η)), and
ξ = F (ξ, η), η = G(ξ, η).
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Coupled Best Proximity Points for Noncyclic Maps in Uniformly Convex
Banach Space

This section is based on [2].
We will generalize the ideas of noncyclic maps and optimal points [1], best

proximity points of maps of two variables [32] to introduce the notion of optimal
points for noncyclic maps of two variables.

Definition 25. Let (Z, ρ) be a metric space. Let X, Y ⊂ Z be sets, such
that dist(X, Y ) > 0. Let F : X × X → X and G : Y × Y → Y . We will call
the ordered pair of maps (F,G) a noncyclic maps of two variables. An ordered
pair of ordered pairs ((x, y), (u, v) ∈ (X × X) × (Y × Y ) is called an optimal
pair of coupled fixed points of the ordered pair of noncylic maps (F,G), provided
that (x, y) is a coupled fixed point of F , (u, v) is a coupled fixed point of G and
ρ(x, u) = ρ(y, v) = dist(A,B).

Definition 26. Let (Z, d) be a metric space. Let X, Y ⊂ Z be sets, such that
dist(X, Y ) > 0. Let F : X×X → X and G : Y ×Y → Y . We say that the ordered
pair of noncylic maps (F,G) is a noncyclic contraction if there is α ∈ [0, 1) so that
the inequality ∥F (x, y) − G(u, v)∥ ≤ α∥x − u∥ + (1 − α)dist(X, Y ) holds for any
x, y ∈ X and u, v ∈ Y .

Theorem 13. Let (Z, ∥ · ∥) be a uniformly convex Banach space. Let X, Y ⊂
Z be two convex sets, such that dist(X, Y ) > 0. Let F : X × X → X and
G : Y × Y → Y be such that the ordered pair of maps (F,G) be a noncyclic
contraction map. Then

13.i) the ordered pair of maps (F,G) has a unique optimal pair ((x, y), (u, v)) of
coupled fixed points (x, y) ∈ X ×X and (u, v) ∈ Y × Y

13.ii) for every (x0, y0) ∈ X×X, (u0, v0) ∈ Y ×Y the sequences {xn}∞n=1, {yn}∞n=1,
{un}∞n=1 and {vn}∞n=1 converge to x, y, u and v, respectively

13.iii) a priori error estimate holds

max{∥x− xm∥, ∥y − ym∥} ≤ max{M0, N0}
q

 
max{M0, N0} − d

Cd

q
√
αm

1− q
√
α

13.iv) a posteriori error estimate holds

max{∥xn − x∥, ∥yn − y∥} ≤ max{Mn, Nn}
1− q

√
α

q

 
max{Mn, Nn} − d

Cd
,
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where for every x ∈ A and y ∈ B we use the notation

Mn = max{∥xn − un∥, ∥F (xn, yn)− un∥},

Nn = max{∥yn − vn∥, ∥F (yn, xn)− vn∥},

and d = dist(X, Y ).
If in addition on of the sets X or Y is strictly convex then x = y and u = v.

Chapter II
Variational Principles in Partially Ordered metric Spaces

The results in this chapter are from [3, 5].

Hardy-Roger’s Maps with the Mixed Monotone Property in Partially
Ordered Metric Spaces

The results in this section are from [5].

Theorem 14. Let (X, ρ,⪯) be a partially ordered complete metric space and
F : X×X → X be a continuous map with the mixed monotone property. Let there
exist α + β + γ ∈ [0, 1/2), so that the inequality

(9)
ρ(F (x, y), F (u, v)) ≤ α(ρ(x, u) + ρ(y, v))

+β(ρ(x, F (x, y) + ρ(u, F (u, v))
+γ(ρ(x, F (u, v)) + ρ(u, F (x, y)).

holds for all x ⪰ u and y ⪯ v. If there exists at least one ordered pair (x, y), such
that x ⪯ F (x, y) and y ⪰ F (y, x), then there exists a coupled fixed point (x, y) of
F .

If in addition every pair of elements in X×X has an lower or an upper bound,
then the coupled fixed point is unique.

Tripled fixed points for map with the mixed monotone property

This section is based on the results from [3].
Let (X,≼) be a partially ordered set. Following [9], whenever we consider the

Cartesian product space X × X × X = X3 we will endow it with the following
partial order (u, v, w) ⪯ (x, y, z) if x ≼ u, y ≼ v and z ≼ w, provided that
(x, y, z), (u, v, w) ∈ X ×X ×X.

17



Tripled fixed points for map with the mixed monotone property

Let (X, ρ) be a metric space. Following [9], whenever we consider the Cartesian
product space X ×X ×X we will endow it with the metric

ρ1((x, y, z), (u, v, w)) = ρ(x, u) + ρ(y, v) + ρ(z, w),

provided that (x, y, z), (u, v, w) ∈ X ×X ×X.

Definition 27. Let X be a set and F : X×X×X → X, G : X×X×X → X,
and H : X×X×X → X. The ordered triple (F,G,H) is called and ordered triple
of maps.

Definition 28. Let X be a set and (F,G,H) be an ordered triple of maps.
An element (x, y, z) ∈ X ×X ×X is called triple fixed point of if∣∣∣∣∣∣

ξ = F (ξ, η, ζ)
η = G(ξ, η, ζ)
ζ = H(ξ, η, ζ).

If G(x, y, z) = F (y, x, y) and H(x, y, z) = F (z, y, x) we get the tripled fixed
points introduced and investigated in [9].

Definition 29. Let (X,≼) be a partially ordered set and (F1, F2, F3) be an
ordered triple of maps. We say that (F1, F2, F3) has the mixed monotone property
if for any x, x1, x2, y, y1, y2, z, z1, z2 ∈ X there hold

Fi(x1, y, z) ≼ Fi(x2, y, z), holds for every i = 1, 2, 3, provided that x1 ≼ x2

Fi(x, y1, z) ≽ Fi(x, y2, z), holds for every i = 1, 2, 3, provided that y1 ≼ y2

and

Fi(x, y, z1) ≼ Fi(x, y, z2), holds for every i = 1, 2, 3, provided that z1 ≼ z2.

If G(x, y, z) = F (y, x, y) and H(x, y, z) = F (z, y, x) we get notion of for a map
F , introduced in [9].

Theorem 15. Let (X, ρ,≼) be a partially ordered complete metric space and
(F,G,H) be an ordered triple of continuous maps.

Let us put x = (x(1), x(2), x(3)) ∈ X ×X ×X and consider the subset Y 3 ⊂ X3

defined by

Y 3 = {(x(1), x(2), x(3)) ∈ X3 : x(1) ≼ F (x), x(2) ≽ G(x) and x(3) ≼ H(x)} ≠ ∅.
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Let T : X → R ∪ {+∞} be a proper, l.s.c., bounded from below function.
Let for any ε > 0 be arbitrary chosen and fixed there is a u0 ∈ Y 3, such that the
inequality T (u0) ≤ inf

v∈Y 3
T (v) + ϵ holds.

Then therefore exists an ordered triple x ∈ Y 3, such that T (x) ≤ T (u0),
ρ1(x, u0) ≤ 1, and for every w ∈ Y 3 different from x ∈ Y 3 holds the inequality

T (w) > T (x)− ϵd(w, x).

Applications of Theorem 15

Theorem 16. Let (X, ρ,≼) be a partially ordered complete metric space, and
(F1, F2, F3) be an ordered triple of continuous maps with the mixed monotone prop-
erty. Let there exists α ∈ [0, 1), so that the inequality

3∑
k=1

ρ(Fk(x, y, z), Fk(u, v, w)) ≤ α(ρ(x, u) + ρ(y, v) + ρ(z, w))

holds for all x ≽ u, y ≼ v and z ≽ w. If there exists at least one ordered pair
(x, y, z), such that x ≼ Fi(x, y, z), y ≽ F2(x, y, z) and z ≼ F3(x, y, z), then there
exists a tripled fixed points (x, y, z) of (F1, F2, F3).

If in addition every pair of elements in X3 has an lower or an upper bound,
then the tripled fixed point is unique.

The next theorem, which is a corollary of Theorem 16 covers a wide class of
the investigated maps from [9].

Theorem 17. ([9]) Let (X, ρ,≼) be a complete partially ordered metric space
and F be a continuous maps with the mixed monotone property. Let there exist
α, β, γ ∈ [0, 1), satisfying s = α + 2β + γ < 1, so that the inequality

(10) ρ(F (x, y, z), F (u, v, w)) ≤ αρ(x, u) + βρ(y, v) + γρ(z, w)

holds for all x ≽ u, y ≼ v, and z ≽ w. If there exists at least one ordered tripled
(x, y, z), such that x ≼ F (x, y, z), y ≽ F (y, x, y), and z ≼ F (z, y, x), then there
exists a tripled fixed points (x, y, z) of F , i.e., x = F (x, y, z), y = F (y, x, y) and
z = F (z, y, x).

If in addition each pair of elements in X ×X ×X has an lower or an upper
bound, then the tripled fixed point is unique.
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Chapter III
Applications in Market Equilibrium of Oligopoly Markets

We would like to introduce the main concepts and results in the field of equi-
librium theory in oligopoly markets.

Let us first start with an oligopoly model where n companies are competing
for the same consumers for just one good and striving to meet the demand with an
overall production of Z =

∑n
k=1 xk, where xk is the production of the k-th player

[21, 31]. The market price is defined as P (Z) = P (
∑n

k=1 xk), which is the inverse
of the demand function. Market players have cost functions ck(x), k = 1, 2, . . . , n,
respectively. Πk(x1, x2, . . . , xn) = xkP (

∑n
k=1 xk)− ck(xk) for k = 1, 2, . . . , n be the

payoff function of the k-th player.
Assuming that firms are acting rationally, i.e., the goal of each company is to

maximize its profit, assuming the the other players do not change their levels of
production, we have

(11)

∣∣∣∣ max {Πk(x1, x2, . . . , xn) : xk, assuming that xj, j ̸= k is fixed}
k = 1, 2, . . . , n.

Provided that functions P and ck, k = 1, 2, . . . n are differentiable, we get the
equations

(12)

∣∣∣∣∣ ∂Πi(x1,x2,...,xn

∂xi
= P (

∑n
j=1 xj) + xiP

′(
∑n

j=1 xj)− c′i(xi) = 0

k = 1, 2, . . . , n.

The solution to the maximization of the payoff functions Πk for k = 1, 2, . . . n
are the solutions of the first-order system of equations (12). To be sure that a
solution of (12) presents the equilibrium of production in the considered oligopoly
market [21, 31], i.e., the solution of the maximization of the payoff functions Πk

for k = 1, 2, . . . n, some additional assumptions should be checked. It is either the
payoff functions Πk for k = 1, 2, . . . n being concave or the solution (ξ1, ξ2, . . . , ξn)

should satisfy the second order conditions ∂2Πk(x1,x2,...,xn)
∂x2

k
(ξ1, ξ2, . . . , ξn) < 0 for k =

1, 2, . . . n.
If we stick to a duopoly market, i.e., a market with two producers, often

equations (12) have solutions in the form of x1 = b1(x2) and x2 = b2(x1), which
are called response functions ([21]). The same response functions can arise, and in
the case of three players on the market, i.e., x1 = b1(x2, x3), x2 = b2(x1, x3), and
x3 = b3(x1, x2) [21, 31].

It may turn out difficult or impossible to solve (12); thus, it is often advised
to search for an approximate solution. Another drawback when searching for an
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approximate solution is that it may not be stable. Fortunately, we can find an
implicit formula for the response function in (12), i.e.,

xk =
∂Πk(x1, x2, . . . , xn)

∂xk
+ xk = Gk(x1, x2, . . . , xn)

for k = 1, 2, . . . n. Thus we get the notions of generalized coupled fixed points
x1 = G1(x1, x2) and x2 = G2(x1, x2) in the case of a duopoly market and generalized
tripled fixed points x1 = G1(x1, x2, x3), x2 = G2(x1, x2, x3) and x3 = G3(x1, x2, x3)
if three players are involved in the market.

Application of Theorem 12 in Market Equilibrium in Duopoly Markets

The next example is similar to that in [15], except that the norm, instead of
the Euclidean one ∥ · ∥, is the summing one ∥ · ∥1.

Example 1. Let us consider a market with two competing firms; each firm
produces two products, and any one of the items is completely replaceable with
a similar product of the other firm. Let us assume that the first firm can produce
much fewer quantities than the second one, i.e., if x1, x2 are the quantities produced
by the first firm and y1, y2 are the quantities produced by the second one, then
x1, x2 ∈ [0, 1] and y1, y2 ∈ [2, 3]. Let A = [0, 1] × [0, 1] and B = [2, 3] × [2, 3] be
considered as subsets of (R2, ∥ · ∥1), which is a Banach space. Let us consider the
response functions F (x1, x2, y1, y2) and f(x1, x2, y1, y2) defined by

F (x, y) =

ß 3x1

8 + x2

8 − 3y1
16 − y2

16 + 1
x1

8 + 3x2

8 − y1
16 −

3y2
16 + 1

, f(x, y) =

ß
−3x1

16 − x2

16 +
3y1
4 + y2

4 + 5
4

−x1

16 −
3x2

16 + y1
4 + 3y2

4 + 5
4

.

The ordered pair (F, f) satisfies Theorem 12. Thus there exists an equilibrium
pair (x, y) = ((x1, x2), (y1, y2)) and for any initial start in the economy, the iterated
sequence (xn, yn) = ((xn1 , x

n
2), (y

n
1 , y

n
2 )) converges to the market equilibrium (x, y).

We get in this case that the equilibrium pair of the production of the two firms is
x = (1, 1), y = (2, 2), and the total production will be a = (3, 3).

This example shows that the geometry of the underlying space, the geometry
of the domain A × B, and the positioning of the subsets A and B are crucial for
the uniqueness of the existing coupled best proximity points.

Some statistical measurments in modeling of data

Investigating the stationarity of time series is an important factor for our
study. A stationary time series is a series whose statistical measures, such as mean,
variance, covariance, and standard deviation, are not a function of time. In other
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words, stationarity in a time series means a time series without trends or seasonal
components. The two most popular statistical tests to ascertain whether or not a
time series is stationary are the augmented Phillips-Perron (PP) and Dickey-Fuller
(ADF) tests [14]. The Dickey-Fuller (ADF) test evaluates the hypothesis of a unit
root α1 = 1 in the model Yt = α1Yt−1 + ϵt, or, equivalently, the hypothesis of
γ = 0 in ∆Yt = γYt−1 + ϵt, where Yt denotes the value of a data point at period t,
∆Yt = Yt−Yt−1, ϵt – a pure random disturbance in t. Tests involving lagged changes
are called augmented Dickey-Fuller tests and are also used for hypothesis testing
γ = 0. The null hypothesis H0 means that the time series is non-stationarity and
indicates the presence of a trend; the alternative hypothesis H1 means stationarity.
Put otherwise, the small p-value indicates that it is improbable that a unit root
exists.

The least squares method

The Least Squares Method (LSM) is one of the most widely used methods in
statistics and holds a special place in the development of science. Adrien-Marie
Legendre [27] initially published the LSM in 1805, which was established by Carl
Friedrich Gauss in 1795. The method is usually associated with linear statistical
models, where its efficacy is most evident.

When assuming a linear form of dependence, we can written as: y = β0 +
β1x1 + β2x2 + . . . + βkxk + ϵ, where the coefficients β0, β1, β2, . . . , βk are the ones
we are searching for.

For n joint observations of the dependent y and independent variable X is
expressed in the following matrix form: Y = Xβ+ ϵ, where Y = (y1, y2, . . . , yn)

T is
the variable observation vector of n× 1, X is the known matrix of n× (k+1) with
the first column consisting of ones, β = (β0, β1, . . . , βk)

T is the unknown parameter
vector of (k+1)×1, and ϵ = (ϵ1, ϵ2, . . . , ϵn)

T of n×1 is the error vector. Finding the
parameters β so that the sum of the squares of the errors is as little as possible is
the basic goal of the least squares approach [11], i.e., (Y −Xβ)T (Y −Xβ) → min.

Statistical measures for model estimation

We employ two basic statistical metrics to assess the effectiveness of the built

models: the mean absolute percentage error MAPE = 1
N

∑n
t=1

∣∣∣Pt−Yt

Yt

∣∣∣ and the

coefficient of determination R2 = 1 −
∑n

t=1(Pt−Yt)
2∑n

t=1(Yt−Y )2
, where the sample size is n, the

predicted values are Pt, the mean is Y , and the values of the dependent variable are
Yt. Our objective is to develop a model with the lowest MAPE and the maximum
potential value of R2.
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Application of Theorem 16 in Investigation of Market Equilibrium of
Tripodal markets

We will use an easy-to-implement version of Theorem 16.

Corollary 1. ([3]) Let us consider an oligopoly market with three players,
satisfying:

1. the three players are producing perfect substitutes of a homogeneous good

2. the i-th player can produce quantities from the set Xi, i = 1, 2, 3, where Xi

are closed nonempty subsets of a complete metric space (R, | · |)
3. let the ordered tripled (F1(x, y, z), F2(x, y, z), F3(x, y, z)), Fi : X1×X2×X3 →

Xi, i = 1, 2, 3 be a semi-cyclic map that presents the response functions for
players one, two, and three, respectively

4. (F1, F2, F3) be an ordered triple of continuous maps with the mixed monotone
property

5. let there be 0 < α < 1, so that the inequality:

(13)
3∑

i=1

|Fi(x, y, z)− Fi(u, v, w)| ≤ α(|x− u|+ |y − v|+ |z − w|)

holds for all x ≽ u, y ≼ v, and z ≽ w

6. there exists at least one ordered tripled (x, y, z), such that x ≼ Fi(x, y, z),
y ≽ F2(x, y, z) and z ≼ F3(x, y, z).

Then there exists an ordered tripled (x, y, z) which is a market equilibrium,
i.e., a tripled fixed point for (F1, F2, F3).

If in addition every pair of elements in X3 has a lower or an upper bound,
then the market equilibrium is unique.

We will consider real-world data sets for oligopoly markets dominated by three
large firms. We will attempt to model the response functions of these players using
ordered triples of response functions (F1, F2, F3) satisfying the mixed monotone
property.

We search for an ordered triple (F1, F2, F3) of linear response functions

(14) Fk(x1, x2, x3) =
3∑

j=1

akjxj + dk,

satisfying max

{
3∑

k=1

|akj| : j = 1, 2, 3

}
.
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Models with (F1, F2, F3) ∈M2

We will investigate classes of response functions (F1, F2, F3) with the mixed
monotone property. We denote the classes

Mi = {(F1, F2, F3) : akj ≤ 0, aij ≥ 0 for i ∈ {1, 2, 3}\{k}, j = 1, 2, 3}
Let us point out that there is no restriction, which of the players will be put

as a first variable in the response functions Fi, which will be the second and so
on. Therefore we will consider three different case, mentioned above and besides
the mixed monotone property, the contractive condition in Corrolary 1 should be
satisfied too.

Models with (F1, F2, F3) ∈M2

In our analysis, we have monthly data on beer sales (1000 HLTRs) by five sig-
nificant corporations that cover the whole Bulgarian beer industry. The percentage
share of each company in the market distribution is calculated. To determine the
market equilibrium, we consider the three companies with the largest percentage
share of sales.

Monthly data on the percentage participation of each company (Com1, Com2,
Com3) contains a total of N = 48 data from January 2017 until December 2020.
Over the period, the three companies covered an average of 88.73%.

Table 1 presents the descriptive statistics on the values of the volume of beer
sold for each of the three company brands. The close values of the mean and
median, as well as the values close to zero of the skewness and kurtosis for the
three variables, indicate that we may assume the data is normally distributed.
This is confirmed by the Kolmogorov-Smirnov and Shapiro-Wilk tests, which are
insignificant with p-value > 0, 05 for the variables under consideration. Also, Table
1 shows the third firm has the largest average proportion of sales.

Table 1. Descriptive statistics of the initial variables used.

Variable Mean Median Std. Dev. Variance
Com1,% 27.593 27.46 2.26 5.09
Com2,% 25.202 24.95 1.83 3.36
Com3,% 35.931 35.83 4.18 17.47
Variable Skewness Std. Err. Skewness Kurtosis Std. Err. Kurtosis
Com1,% -0.152 0.343 -0.766 0.674
Com2,% 0.632 0.343 0.102 0.674
Com3,% -0.064 0.343 -0.369 0.674

Figure 1 shows a sequence plot of the three companies’ percentage participa-
tion. The leading company’s trend is increasing, while the other two are somewhat
decreasing.
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Figure 1. Percentage shares in the market over time for Com1 in red, Com2 in green, and Com3

in blue color.

We get

(15)

 F1(x, y, z) = 0.79x +0.01z +6.2,
F2(x, y, z) = 0.1x −0.1y +24.74,
F3(x, y, z) = 0.1x −0.1y +0.85z +5.37

(a) Com1, real data in blue vs
approximated by response function
xn = F1(xn−1, yn−1, zn−1) shares in
red

(b) Com2, real data in blue vs
approximated by response function
yn = F2(xn−1, yn−1, zn−1) shares in
red

(c) Com3, real data in blue vs
approximated by response function
zn = F3(xn−1, yn−1, zn−1) shares in
red

Figure 2. Real data in blue vs approximated by response function in red

Table 2 presents the statistical performance of the created models, which once
again shows that the first and third models have high statistical indicators, while
the second model explains 25% of the data.

Table 2. Statistical performance of the created models

Model Com1 Model Com2 Model Com3

R2 0.988 0.249 0.995
MAPE 0.0302 0.0566 0.0187

25



Models with (F1, F2, F3) ∈M2

(a) Com1, ACF of reziduals (b) Com2, ACF of reziduals (c) Com3, ACF of reziduals

Figure 3. ACF of reziduals of created models.

Figure 3 presents the autocorrelation function (ACF) of the residuals. This
indicates that most lags fall within the confidence bounds, suggesting that the
residuals behave as white noise. However, a few individual lags exceed the confi-
dence limits, which may be attributed to random fluctuations rather than model
misspecification.
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(a) Com1, Ljung-Box Test of rezidu-
als.
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(b) Com2, Ljung-Box Test of rezidu-
als.
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(c) Com3, Ljung-Box Test of rezidu-
als.

Figure 4. Ljung-Box Test of reziduals of created models.

Figure 4 presents the p-values of the Ljung-Box test for the residuals of the
constructed models. On the x-axis, the lags h are marked. On the y-axis, the
p-values associated with the test for each lag are plotted. A horizontal red line is
usually added to indicate the significance level (e.g., 0.05). Lags where the p-values
fall below this line indicate the presence of autocorrelation.

In the first model, there are no autocorrelations in the residuals up to the 16th
lag. In the third model, a few autocorrelations can be observed up to the second
lag, while in the second model, autocorrelations are present up to the 10th lag.
This indicates that the first and third models adequately describe the data.

The three models presented, based on response functions satisfying the mixed
monotone property, demonstrate the impossibility of describing the market with
only one model of class M1 ∪ M2 ∪ M3. It is interesting to note that in each
of the considered cases we have a statistically reliable description of two of the
market participants. Moreover, if we were to study, for example, the behavior and
reactions of two of the participants, for example, the first and second, then if we
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consider a model with functions of class M3, we will obtain a model for these two,
which predicts their behavior over time and their reactions to changes in the pace.
We can conclude that the presented illustrations demonstrate the possibilities of
considering three possible models, and in each of them we can draw conclusions
for two of the participants.

On illustrative examples with particularly chosen random data, satisfy-
ing some patterns

We generate random data that follows a specific pattern. The graphs are
presented in the following figure 5. We insist on some periodic behavior of the
three players and two of them to show an increasing trend, while the third to be
with a decreasing one.

(a) Company 1, real data (b) Company 2, real data (c) Company 3, real data

Figure 5. Random real data for three companies in the oligopoly market

Search for (F1, F2, F3) ∈M2, we get

(16)

 F1(x, y, z) = 0.79x +0.15z +4.37,
F2(x, y, z) = 0.1x −0.1y +0.1z +21.25,
F3(x, y, z) = 0.1x −1.1y +0.73z +30.21

(a) Company 1, real data in blue vs
approximated by response function
xn = F1(xn−1, yn−1, zn−1) shares in
red

(b) Company 2, real data in blue vs
approximated by response function
yn = F2(xn−1, yn−1, zn−1) shares in
red

(c) Company 3, real data in blue vs
approximated by response function
zn = F3(xn−1, yn−1, zn−1) shares in
red

Figure 6. Real data in blue vs approximated by response function in red
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Summary of the obtained results

We have got a market equilibrium point

(x, y, z) = (38.66859470, 25.20445457, 25.05539642).

Conclusion

Summary of the obtained results

The main contributions in the present thesis

The main contributions in the present thesis are:

I. Coupled best proximity points results for cyclic and semi-cyclic maps when
the underlying space is just a reflexive Banach space, instead of uniformly
convex.

II. An error estimation for best proximity points for noncyclic maps has been
developed.

III. Coupled fixed points and tripled fixed points for maps with the mixed mono-
tone property in partially ordered metric spaces are investigated.

IV. Ekeland’s variational principle for maps with the mixed monotone property
is generalized. With the help of it, conditions for the existence and conditions
for the uniqueness of tripled fixed points for classes of maps with the mixed
monotone property are found.

V. Applications of some of the results in the modeling of oligopoly markets.

List of publications included in the thesis

1 L. Ajeti, A. Ilchev, B. Zlatanov. On Coupled Best Proximity Points in Reflexive
Banach Spaces, Mathematics, 10(8), (2022), Article number 1304. (Web of
Science, IF=2.258, Q1; SCOPUS, SJR=0.538, Q2)

2 L. Ajeti, B. Zlatanov. Coupled Fixed Points Results for Hardy-Rogers Type of
Maps with the Mixed Monotone Property Obtained with The Help of a Varia-
tional Technique, MATTEX 2022, CONFERENCE PROCEEDING, v. 1, (2022)
37- 42.

3 L. Ajeti, A. Ilchev. A Variational Principle and Triple Fixed Points, AIP Confer-
ence Proceedings, 3182 (2025), Article number 070006, doi: 10.1063/5.0245984,
(Web of Science, SCOPUS, SJR=0.152)
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Approbation of the obtained results
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The connection between the contributions, the tasks, the paragraphs in
the thesis and the included publications.

The connection between the contributions, the tasks, the paragraphs in the
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