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Introduction

The mathematical basis of the translators, and therefore of the programming languages, is the  
theory  of  the  formal  languages  and  the  abstract  machines  that  process  them.  Since  every  
programming  language  is  a  formal  language,  it  is  convenient  and  common  to  describe  the 
programming  languages  or  parts  of  them  (vocabulary,  syntax,  semantics,  etc.)  by  generative 
grammars, and parts of the translation process itself (lexical, syntactic, and semantic analyses) to be 
described  with  different  classes  of  abstract  recognizers  (finite  automata,  push-down  automata, 
Turing machines, etc.).

This dissertation is devoted to two important elements of any translator, namely lexical and 
syntactic  analyses.  Throughout  the  dissertation,  unless  otherwise  stated,  "data"  will  mean  data  
processed by a translator.

Checking whether particular  data belongs to a given language is  a  subject  of  lexical  and 
syntactic analyses, and it is called recognition. The parsing (syntactic analysis) of the specific data is 
their recognition and the derivation of concrete structural information about them. 

The development of algorithms related to the recognition and parsing of data is done by many 
authors,  as  the  similarities  and differences  between the  algorithms are  not  always  immediately 
visible.  The  known  algorithms  for  data  recognition  and  parsing  have  various  advantages  and 
disadvantages. 

There are computer programs that automatically generate the source code of a parser based on 
a given grammar, which code is written in a particular programming language. This code can be 
used to parse arbitrary data and output the corresponding structure. The derived data structures can 
be used for both further compilation and analysis.

The dissertation work involves the design of a machine for parsing data, called a parsing 
machine, in which different parsing algorithms can be used. The advantages of this parsing machine 
are  that  it  unites  together  different  parsing  approaches/algorithms  and  adds  some  capabilities 
missing in the concrete parsers known in the literature.

An important part of the dissertation is the design of a new parsing algorithm called Tunnel  
Parsing (TP), which is built into the parser module of the parsing machine and takes advantage of  
the added capabilities of the parsing machine.

Part of this dissertation is also aimed at the study of a class of ambiguous grammars, a proper  
subclass of the ambiguous context-free grammars, generating data, for which the above-mentioned  
Tunnel parsing is performed in linear time.

Another essential element of the work is the development of a tool to measure the resources 
used  during  the  recognition/parsing  of  data  (generated  by  different  context-free  grammars)  by 
automatically  generated  parsers  with  different  parser  generators  and  compilers,  called  parser 
generator profiler, profiler for short.
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Goal and tasks of the dissertation

The  main  goal  of  the  dissertation  research  is  to  investigate,  propose,  design,  develop,  
experimentally apply, and approbate means (machines, algorithms, models, languages, and tools) 
that are suitable for linear data translation based on some ambiguous context-free grammars.

To achieve the set goal of the dissertation research, the following six main tasks were planned:

Task  1. Research  of  theories,  formal  means,  approaches,  methods,  algorithms,  models, 
architectures, machines, and systems that are related to the translation of data;

Task  2. Designing  a  common  parsing  machine  architecture  that  combines  different 
approaches/algorithms for lexical and syntactic analyses with some new added capabilities;

Task 3. Defining a new kind of context-free grammar, equally powerful as the context-free 
grammars, conforming to the proposed common parsing machine architecture;

Task 4. Designing a new parsing algorithm embedded into the parsing machine, which, using 
the added capabilities in it, can parse data based on the new kind of grammars when there is no left 
recursion in them; 

Task 5. Designing and implementing a prototype of a tool for measuring and comparing the  
resources used by different parsers, including automatic creation of grammars written in a specially  
created metaprogramming language, as well as creating parsers for these grammars with various 
parser generators and compilers;  

Task 6. Conducting experiments using the created tool.

Structure of the dissertation

The  dissertation  consists  of  lists  of  tables  and  figures,  an  introduction,  four  chapters,  a 
conclusion, a list of the author's publications on the topic, a list of the noted citations, appendices, a 
list of references, and a statement of originality.

The  main  text  of  the  dissertation  consists  of  163 pages  and  is  accompanied  by  2  (two) 
appendices (2 pages).

Chapter 1 Overview contains theories of the formal languages and their processing abstract 
machines related to  translation.  The elements  of  a  translator  that  perform lexical  and syntactic  
analyses  are  discussed,  as  well  as  the  generative  grammars  they  use.  The  chapter  provides  an 
overview of finite automata, push-down automata, Turing machines, Markov algorithms, etc. The 
overview includes  well-known algorithms for  recognition and parsing working on the  basis  of 
context-free grammars.

Chapter  2  Parsing  machine contains  formal  definitions  of  advanced  grammars,  a  phrase 
machine that is created on the basis of these grammars, and a detailed description of a parsing  
machine. The chapter contains the definitions of languages that are defined by advanced grammars 
with advanced symbols. The parsing machine shown contains different types of modules, such as 
supplier,  scanner,  lexer,  parser,  optimizer,  builder,  and  filter.  The  different  modules  and  their  
functionalities are described in detail. The chapter concludes with the definitions of different types  
of syntax trees and the construction commands on the basis of which the trees can be created.

Chapter  3  Tunnel  parsing algorithm contains  a  detailed description of  the Tunnel  parsing 
algorithm. The various objects that are created before the parsing begins, based on a given advanced 
grammar, are described in detail. The list of these objects includes: execution stack, depth stack, 
repetition stack, archive stacks, automata, reachable trees, conflicts, tunnels, routers, and control  
objects. The detailed description of the control objects contains the steps that the parser performs  
and is effectively the pseudocode of the Tunnel parsing algorithm. The chapter contains an example  
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of the defined objects that are used by the algorithm and concludes with an example execution of 
the algorithm for a selected string of input data.

Chapter 4 Profiling of automatically generated parsers discusses a tool specially created for 
the purpose of the dissertation, called a profiler, with the help of which a large number of context-
free grammars and inputs can be generated and experiments can be performed with parsers that are 
generated by various parser generators based on these grammars. The chapter contains a description  
of a template grammar language specially created for the purpose of the dissertation for imperative 
metaprogramming  of  grammars.  The  different  grammars  that  define  the  scripts  that  are  valid 
according to the template language are shown. The chapter concludes with the interpretation of the 
results of four different experiments that were conducted using the profiler. 

In the conclusion, the main results are summarized and systematized, indicating the scientific, 
scientific-applied,  and  applied  contributions  of  the  dissertation  work.  The  prospects  for  the 
development of the dissertation topic are formulated.

The list of used literature includes 191 (one hundred and ninety-one) titles, two of which are  
in Bulgarian, two are in Russian, and the rest of them are in English.

Approbation

The  main  results  of  the  research  were  reported  at  an  international  conference  and  an 
international  scientific  forum  –  14th  International  Conference  Education  and  Research  in 
Information Society (ERIS), Plovdiv and 8th Summer School, CEFP 2019, Budapest, Hungary.

The results  of  the dissertation research are presented in 6 (six) publications -  4 (four)  in 
specialized journals, 1 (one) - in the proceedings of an international conference, and 1 (one) - in the  
proceedings  of  an  international  forum.  The  six  publications  are  indexed  in  world-renowned 
databases: 4 (four) in Web of Science and 5 (five) in Scopus. Five of the publications are in editions 
with SJR.

Noted is a citation of 1 (one) of the publications on the topic in one scientific study, which is  
indexed in the world databases.
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1 Overview

The  theory  of  translation  includes  the  work  with  the  formal  languages  and  the  abstract  
machines that process them [1, p. 208t], with which translators work. It is generally accepted that a 
translator performs lexical and syntactic analyses.
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1.1 Formal means

The formal grammars and their corresponding abstract machines make it possible to write 
languages in various forms and to check for the membership of arbitrary strings in these languages. 
Combining formal means enables working with programs written in programming languages.

Switching Circuits
A way to work with switching circuits composed of relays is considered by Shannon (Claude 

Elwood Shannon),  who draws  a  parallel  between  propositional  logic  (sentential  logic)  and  the  
circuits that implement it.

Neural Networks
The time a network operates is assumed to be discrete (divided into consecutive and equal 

time intervals) and starts at one. At each time interval, all  neurons either fire or do not fire an  
impulse. Depending on how a network can write and read information in the environment, different, 
more complex types of machines are possible.

Regular expressions
In [2, p.104c] X+ is used as an abbreviation of XX*. 

An  efficient  way  to  transform  a  finite  automaton  into  a  regular  expression  is  to  use  a 
generalized  nondeterministic  finite  automaton —  an  automaton  with  transitions  consisting  of 
regular expressions [3, p. 70t]. Every nondeterministic automaton is generalized, but not vice versa.

In practice, user-written regular expressions do not always define exactly the strings that the 
user expects [4]. 

Generative grammars, Chomsky's hierarchy
The Augmented Backus-Naur Form (ABNF) is described in [5] and [6]. The more expressive 

capability a metalanguage has, the easier it is for the developer to develop the grammar that defines 
the object language.

The languages defined by four types of grammars (unrestricted, context-sensitive, context-
free, and regular) form Chomsky's hierarchy.

It is said (already used in some cases above) that all activities (generation of strings in the 
language, which is defined by the grammar, data recognition, etc.)  are performed  based on the 
grammar.

Context-free grammars
The renaming rules can be removed from a grammar without changing the language, but this 

will  change  the  syntax  trees  that  are  generated  based  on  the  grammar.  In  other  words,  the 
transformation is always possible, but not always acceptable.

In a self-embedding grammar for an active and a central nonterminal A, there exists A⇒+xAy 
for x,y∈V+ [7, p. 148b].

Finite automata
In  [8,  p.  210t],  it  is  noted  that  if  the  function  f outputs  more  than  one  result,  then  the 

automaton  becomes  nondeterministic.  All  tapes  Т(А) recognized  by  a  finite  automaton  А are 
regular language. 

The size of a finite automaton can directly affect the time it takes to recognize strings. For this  
reason, it is desirable that the finite automata used for string recognition have as few states and 
transitions as possible.
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Push-down automata
The transition function is δ:S×(Σ∪{ε})×Γ→{}S×Γ*, where →{} is defined to mean that the 

function can return more than one result as a sequence and that all results are elements of a given 
set. 

A push-down automaton is  deterministic if the automaton always has at most one possible 
transition to apply. All other push-down automata are nondeterministic.

If  a  push-down automaton can recognize each string without  using more than a  constant  
number  of  symbols  in  the  stack,  then  this  push-down  automaton  can  be  transformed  into  a 
(deterministic) finite automaton [9, p. 259b].

Definition of an algorithm
A normal Markov algorithm has a shorter description than the equivalent Turing machine. 

One reason is that the result is obtained by always replacing the leftmost of the embedded words  
when applying a given formula. Thus, an explicit description of the head motion in the equivalent 
Turing machine is not required.

A function that always halts [1, p.208t] for all possible arguments after a finite number of 
executed instructions is called an algorithm [2, p.27t].

Closure of the operations and decidability of the problems
According to [10, p. 159b], for arbitrary context-free languages  A and  B, it is undecidable 

whether: L(A)=L(B); L(A)⊂L(B); and L(A)∩L(B)=∅. 

1.2 Translators

Translation is a fundamental process when working with programs written in programming 
languages. The finite and the push-down automata find application in the translation.

Another possibility is that the language does not have a lexer grammar (but only a parser  
grammar) and therefore does not have a lexer. The parsing of this kind of language is called single-
phase parsing in [11, p. 3rb] and scannerless parsing in [12].

The  translators  are  required  for  the  programming  languages.  Since  every  programming 
language  is  a  formal  language,  the  theory  described  above  applies  directly  to  the  creation  of  
translators.

It is possible for the lexer to be context-aware [13] — the lexer sends multiple token types, 
taking into account the current state of the parser.

A popular way for a parser to work with the tokens is to use them for recognition by a push-
down automaton that is generated based on context-free grammar (the type of grammar used in this 
section).

The  development  of  grammars  and  programming  languages  is  directly  related  to  the 
compilation process.

1.3 Conclusions

Many recognition and parsing algorithms exist. The parsing algorithms often have problems 
with the grammars having rules that generate empty words. The grammars in ABNF contain various 
objects that can generate an empty word. Some of these objects are the rules. Based on the research 
in this chapter, the following conclusions are drawn:

• The popular parsing algorithms do not support repetitions of grammar elements that can exist  
in one ABNF grammar and perform many operations during analysis that can be precomputed 
from the grammar;
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• A key task of the parsing algorithms is to quickly use rules that generate empty words. In [14], 
it  is  shown that this can lead to a lot  of work for a graph that does not contain a single 
character;

• The lexers in the literature group sequences of characters into a token with a name (a unique 
identifier according to the rule used for the grouping). According to the ABNF standard [5], 
%x30-32 is  a  character  range  that  can  be  represented  as  the  set  of  characters 
{'0','1','2'}. If the parser works with a grammar in ABNF, then the following range 
problem exists — how to parse based on the range %x30-32 and which part of the token to 
compare to;

• This creates the following case problem — how to distinguish the token names from the rule 
names in the parser grammar;

• There  is  a  lack  of  detailed  empirical  measurements  about  the  performance  of  different 
automatically generated parsers that provide information on the expected amount of resources 
that are necessary to parse data according to specific grammar elements;

• A parsing machine is necessary to combine the parsing with and without lexical analysis in  
such a way that the benefits of both ways are combined into one, and the user can choose 
whether to have lexical analysis.

2 Parsing machine

This chapter outlines the design of a machine for parsing data, called a parsing machine, in  
which various parsing algorithms can be used.

Informally, a  parsing machine is an abstract machine built from  modules with  connections 
between them that works by taking unstructured data as an input and sending structured data as an 
output. Each parsing machine always scans (reads) the input data and always performs syntactic 
analysis.  

2.1 Basic concept of the machine

The formalization of the concept of a parsing machine is necessary, so that the interactions  
between the modules in the machine and the specific special  cases are shown. In order for the 
machine to use the tokens, a new kind of grammar is needed to enable the parsing based on all 
tokens (except the limit token) in the machine.

The parsing machine is  designed to  distribute  the analysis  of  the input  data  between the 
different modules for the purpose of parallelism and to allow different analysis strategies to be 
applied by the different modules. In the machine, the following modules are distinguished: supplier, 
scanner, lexer, parser, optimizer, builder, and filter.

Similar to the working with tokens by the scanner, the lexer, and the parser, down is discussed 
the working with commands for building syntax trees by the parser, the optimizer, and the builder.

2.2 Characters and lexemes in the machine

It is reasonable to expect a machine that parses textual data to be able to accept (at least) UTF-
8 [15] encoded input and to handle the encoding errors automatically. A character is defined as a 
Unicode  position — a  nonnegative  integer,  with  a  largest  possible  value  that  depends  on  the 
Unicode standard used. The set of characters is denoted by U, and it is emphasized that there is a 
character with Unicode position zero.

Many authors use Unicode positions in the implementation of translators, but at a theoretical 
level, they work with abstract letters. In the theory of the proposed parsing machine, the characters 
are specified as Unicode positions and are required for all modules in the machine (some of which 
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are new or with new functionalities), not just for the lexer and the parser. The concretization of the 
characters brings the theory closer to practice and enables the formal treatment of some practical  
problems.

2.3 Formal definition of a parsing machine

A parsing machine is the n-tuple  (M,T,I,S,L,P,O,B,F), where М is a finite nonempty 
set of modules, C is a finite nonempty set of connections between the modules, I∈M is a nonempty 
set of suppliers, S∈M is a scanner, L∈M is a set of lexers, P∈M is a parser, O∈M is a set of optimizers, 
B∈M is a nonempty set of builders, and F∈M is a set of filters. A module is an output module when it 
sends data outside the machine.

2.4 Tokens

In order to solve the range and case problems, several types of tokens are distinguished, which 
are intended to be used as application data on the transition from the scanner to the lexer, on the 
transition from the lexer to the parser, or on the transition from the scanner to the parser (if there is  
no lexer).

A module is  classified as  a  transmitter when it  outputs  tokens to  another  module that  is 
classified as a receiver. For a transmitter that uses grammar G=(Φ,Θ,-,-) for nonterminals Φ and 
characters Θ⊆U, the following is defined:

• An attribute is written as l=v, where l is a nonempty string of characters (a label) and v is a 
value with a domain, which depends on the label;

• A character token is the n-tuple  (t-character,n,ɑ), where  n∈Θ is a  name and  ɑ is a 
finite set of attributes. If |ɑ|=0, then the token is written as (t-character,n);

• A sequence t  oken   is the n-tuple (t-sequence,n,e,ɑ), where n∈Φ is a name, e is a string 
over Θ (a  lexeme),  |e|>0, and  ɑ is a finite set of  attributes. If  |ɑ|=0, then the token is 
written as (t-sequence,n,e). The unbounded length of е makes these token elements in 
an infinite set;

• A limit token is the n-tuple (t-limit,β,е,ɑ), where β⊆Φ are nonterminals, |β|>0, e is 
a  lexeme,  |e|>0, and ɑ is a finite set of  attributes. If  |ɑ|=0, then the token is written as 
(t-limit,β,е);

• An eof token is the n-tuple (t-eof,ɑ), where ɑ is a finite set of attributes. If |ɑ|=0, then 
the token is written as (t-eof);

• The infinite set of tokens is denoted by H;

• The type of h∈H is the first element in the n-tuple of h, which is obtained as a result of the 
execution of the function Π:H→H' for H'={t-character,t-sequence,t-limit,t-
eof}.

In the above definitions of tokens, only a sequence token (of the t-sequence type) has a 
lexeme that can be used for parsing, and the character token (of the  t-character type) has a 
name instead of a lexeme. This difference from the literature sources enables different ways of  
working with these two types of  tokens.  The limit  token (of  the  t-limit type)  provides the 
theoretical basis for the machine implementations to correctly handle situations (instead of freezing) 
where the working with tokens machine modules do not have enough memory to continue their  
work.
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2.5 Advanced level 1 grammars

In order to solve the case problem and to enable the use of the lexeme in the t-sequence 
tokens for analysis, a new type of symbols are added to the grammars, which are called  phrase 
symbols. 

Defined are  the  set  of  comparators M={ ,≡}≋ ,  where  ≋ means  insensitive  comparator,  ≡ 
means  sensitive,  and  the  case  function Δ:U×U×M→{}U.  For  example, 
Δ('a','a', )={'а','A'}≋ .

2.6 Advanced level 2 grammars 

Advanced level 2 grammars are an upgrade of the level 1 grammars. The goal of this upgrade 
is to bring the advanced grammars closer to those in ABNF by adding groups, concatenations,  
alternations, symbol repetitions, and a symbol defining the empty word.

An advanced level 2 grammar is n-tuple A=(C,N,Σ,Ω,R,S) for a set of categories C, a set 
of nonterminals N, a set of characters T⊆U, a set of advanced symbols Ω, a set of rules R, and a set 
of start nonterminals S⊆N. 

It is defined that:

• Every element  ω∈Ω is an  indexed n-tuple — an n-tuple that holds the  symbol index k∈ℕ0, 
which is written as ɑk∈Ω for n-tuple ɑ. The index is not written when it is not used;

• ∄x,y|x=y∧ɑx∈Ω∧βy∈Ω∧ɑ≠β — all symbol indices in Ω are distinct;

• The type of ω∈Ω is the first element in the n-tuple of ω (with an index of zero) and is obtained 
as  a  result  of  the  execution  of  function  Π:Ω→Ω' for  Ω'∈{s-reference,s-
character,s-phrase,s-eof,s-concatenation,s-alternation,s-
group,s-repeat,s-epsilon};

• The  access function to the elements in the n-tuples is defined as  GET:Ω×ℕ0→Ω'∪C∪N∪Ω, 
which, upon execution of  GET(ω,n) for ω∈Ω and  n∈[0..|n|),  returns the element at 
index n in the n-tuple of ω and Π(ω)=GET(ω,0).

The definitions of advanced level 1 grammars are carried over to level 2, with the n-tuples  
becoming indexed:

• A p  hrase   is a string of characters over Σ;

• A r  eference symbol   is an indexed n-tuple (s-reference,n)∈Ω for n∈N; 

• A character symbol is an indexed n-tuple  (s-character,f,t,m)∈Ω for  f,t∈Σ,  f≤t, 
m∈M;

• A phrase symbol is an indexed n-tuple  (s-phrase,c,p,m)∈Ω for  c∈C,  phrase  p,  and 
m∈M;

• An eof symbol is an indexed n-tuple (s-eof)∈Ω.

The following level 2 symbols are added:

• A concatenation is an indexed (n+1)-tuple (s-concatenation,ω0,…,ωn-1)∈Ω for ωi∈Ω, 
n>0 and Π(ωi)∉{s-concatenation,s-alterantion};

• An  alternation is  an indexed (n+1)-tuple  (s-alternantion,ω0,…,ωn-1)∈Ω for  ωi∈Ω, 
n>0 and Π(ωi)=s-concatenation;

• A  group  symbol is  an  indexed  n-tuple  (s-group,ω)∈Ω for  ω∈Ω∧Π(ω)=s-
alternantion;

• A repetition symbol is an indexed n-tuple  (s-repeat,n,m,ω)∈Ω for  n∈ℕ0,  m∈(ℕ0∪∞), 
n≤m,  n≠1∨m≠1,  ω∈Ω and  Π(ω)∈{s-reference,s-group,s-character,s-
phrase,s-eof}. A repetition with n>1∨(m>1∧m≠∞) is called a countable repetition;
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• An epsilon symbol is an indexed n-tuple (s-epsilon)∈Ω.

The binary irreflexive relation ↦ is defined, as for  x,y∈Ω, it is true that  x↦y if and only if 
GET(x,n)=y for some  n∈[0..|x|). The sign  ↦ is read as "has a pointer to". When  x has a 
pointer to y, it will be said that y is located in x and that x contains or uses y. The transitive closure 
[1, p. 26c] of ↦ is defined as ↦*, which is read as "has a transitive pointer to".

The rules in an advanced level 2 grammar can be in a different form. An  advanced level 2 
context-free grammar is defined as an advanced level 2 grammar having rules in R with the form 
A→ɑ for  A∈N and Π(ɑ)=s-alternation. From here on, unless otherwise stated, an advanced 
grammar means an advanced level 2 context-free grammar.

2.6.1 Well-defined advanced grammars

An advanced grammar A=(-,-,-,Ω,R,-) is well-defined when each symbol in Ω is used 
by one and only one object in A and each symbol is used (transitively) in a single rule. 

The following is defined: 

• ⟦⟧ denotes a set with repeated elements;

• POINTERΩ(ω)= x|(x↦ω|x∈Ω)⟦ ⟧ are all symbols that use ω;

• POINTERR(ω)= r|(r↦ω|r∈R)⟦ ⟧ are all rules in the grammar that use ω;

An advanced grammar A is well-defined if and only if the following conditions hold: 

1. |POINTERΩ(ω)|=1 for each ω∈Ω|Π(ω)≠s-alternation;

2. |POINTERΩ(ɑ)|+|POINTERR(ɑ)|=1 for each ɑ∈Ω|Π(ω)=s-alternation;

3. For each ω∈Ω, it is true that r↦*ω for some r∈R.

From here on, all grammars are assumed to be well-defined. When a grammar is well-defined, 
it enables one to uniquely determine the number of repetitions of a given symbol by defining and 
using the function REPEAT:Ω→ℕ0×(ℕ0∪∞).

2.6.2 Sets of symbols in advanced grammars

From here on, the following denotations are used:

• All reference symbols in Ω are NΩ={ω|ω∈Ω∧Π(ω)=s-reference};

• All phrase symbols in Ω are PΩ={ω|ω∈Ω∧Π(ω)=s-phrase};

• All  phrase  symbols  with  an  empty  phrase  are  called  universal  phrase  symbols (or  s-
universal) and are PAΩ={ω|ω∈PΩ∧|ω.p|=0};

• All nonempty phrase symbols with a sensitive comparator are called sensitive phrase symbols 
(or s-sensitive) and are PSΩ={ω|ω∈PΩ∧|ω.p|>0∧|ω.m|=≡};

• All nonempty phrase symbols with an insensitive comparator are called  insensitive phrase 
symbols (or s-insensitive) and are PIΩ={ω|ω∈PΩ∧|ω.p|>0∧|ω.m|= }≋ ;

• All eof symbols in Ω are FΩ={ω|ω∈Ω∧Π(ω)=s-eof};

• All group symbols in Ω are GΩ={ω|ω∈Ω∧Π(ω)=s-group};

• All repetition symbols in Ω are YΩ={ω|ω∈Ω∧Π(ω)=s-repeat}.

2.6.3 Generation of strings

The  Δ is  extended  to  also  work  with  strings,  as  Δ:U*×M→{}U*.  For  example, 
Δ("ab", )={"ab","aB","Ab","AB"}≋ .

Each advanced symbol  ω∈Ω defines a set of strings over N∪H∪Ω. That  ω defines a string 
β∈(N∪H∪Ω)* is written as  ω⇉β. Below are the strings that are defined by the various advanced 
symbols:
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• For advanced grammars at all levels:

• If ω=(s-reference,n)∈Ω, then ω⇉n;

• If  ω=(s-character,f,t,m)∈Ω,  then  ω⇉(t-character,x) for  each  character 
x∈Δ(f,t,m);

• If ω=(s-phrase,c,-,-)∈PAΩ, then ω⇉(t-sequence,c,β) for each string β∈T+;

• If ω=(s-phrase,c,p,m)∈(PSΩ∪PIΩ), then ω⇉(t-sequence,c,β) for each string 
β∈Δ(p,m);

• If ω=(s-eof)∈Ω, then ω⇉(t-eof).

• For advanced level 2 grammars:

• If ω=(s-concatenation,ω0,…,ωn-1)∈Ω, then ω⇉ω0…ωn-1;

• If ω=(s-alternation,ω0,…,ωn-1)∈Ω, then ω⇉ωi for each i∈[0..n);

• If ω=(s-group,ɑ)∈Ω, then ω⇉ɑ;

• If ω=(s-repeat,n,m,x)∈Ω, then ω⇉β for each string β over {x}, where n≤|β|≤m;

• If ω=(s-epsilon)∈Ω, then ω⇉ε.

An advanced symbol ω∈Ω, which defines a string γ, can be decomposed to the string ɑωβ, as 
the  result  of  the  decomposition  of  the  symbol  is  ɑγβ,  where  ɑ,β∈(N∪Ω∪H)*.  The sequence 
(μ0,...,μn) for n≥0 is a φ decomposition of ψ, if φ,ψ∈(N∪H∪Ω)*, φ=μ0, μn=ψ and μi+1 is the 
result of the decomposition of some advanced symbol in μi for i∈[0..n). The decomposition is 
terminal when  μn∈(N∪H)*.  It  is  said  that  from  φ can  be  derived ψ,  when  there  exists  a  φ 
decomposition of ψ.

The  normal application of rule  D→γ∈R to a string  ɑDβ completes with result  ɑγβ,  where 
ɑ,β∈(N∪Ω∪H)*. From here on, all rule applications are normal. The sequence (μ0,...,μn) for 
n≥0 is a normal φ derivation of ψ, if φ,ψ∈(N∪H∪Ω)*, φ=μ0, μn=ψ and μi+1 for i∈[1..n) is the 
result of: a) the normal application of some rule in  R to  μi; or b) the decomposition of advanced 
symbol  ω∈Ω in  μi. From here on, all derivations are normal.  The number of steps in a normal φ 
derivation of ψ is n. The normal derivation is terminal when μn∈H*. It is said that from φ can be 
derived ψ, when there exists a normal φ derivation of ψ. With φ⇒ψ, a one-step derivation is written, 
with φ⇒*ψ — a derivation with zero or more steps, and with φ⇒+ψ — a derivation with one or more 
steps.

The  infinite  set  of  character  and  sequence  tokens  is  HCS={h|h∈H∧Π(h)∈{t-
character,t-sequence}}. The language generated by a given start rule J∈S in grammar A is 
LA(J)=JCS∪JE, where JCS={w(t-eof)|J⇒+w∧w∈HCS*} and JE={w|J⇒+w∧w∈HCS*(t-eof)}. 
When the grammar is implied, instead of LA(J), just L(J) will be written.

2.6.4 Sets of tokens

The advanced symbols that directly define a token are in the set  HΩ={ω|ω∈Ω∧Π(ω)∈{s-
character,s-phrase,s-eof}}.  The  function  Ψ:HΩ→{}H is  defined  such  that  executing 
Ψ(ω) with  ω∈HΩ returns as a result the set of tokens defined by  ω, according to the definitions 
above. It is said that two advanced symbols x,y∈Ω overlap when Ψ(x)∩Ψ(y)≠∅ (i.e., when the 
sets the symbols define have at least one element in common).

13



2.6.5 Metagrammar for advanced grammars

In order to define advanced grammars, several rules are added to the ABNF standard because:  
a)  the  standard  does  not  allow Unicode  characters;  and  b)  the  standard  cannot  express  phrase 
symbols, nor can it express with a single element the symbol (s-character,x,x, )≋ , when |
Δ(x,x, )|>1≋ . The result obtained from the ABNF standard with the above additions is called  
Advanced ABNF (AABNF).

2.7 Phrase state machine

During parsing based on an advanced grammar, it is possible for the parser to check whether a 
given token  h∈H simultaneously belongs to a large number of sets, each of which results from 
Ψ(ω) for ω∈Z and Z⊆HΩ.

From the sets that are defined by phrase symbols, it follows directly that all phrase symbols  
P⊆Z can be divided into sets that have no elements in common Pc according to their category — 
Pc={ω|ω∈P∧ω.c=c}. 

To make token-to-phrase comparisons fast,  a  phrase machine is created that classifies the 
different lexemes in the tokens and the phrases in the grammar's phrase symbols, so that instead of  
comparisons between strings, comparisons are made between classes of strings. 

Each unique phrase in a sensitive phrase symbol is assigned a unique sensitive index. Each 
phrase in an insensitive phrase symbol is assigned an insensitive index.

After all the phrases in the phrase symbols are classified, in order to check the membership of  
a given sequence token in the sets of tokens defined by the different phrase symbols in a given set 
Pc, a series of actions must be performed.

A phrase state machine (phrase machine for short) is the n-tuple (Σ,Q,δ,F,q0) for alphabet 
Σ⊆U, a nonempty set of  states Q, a  transition function δ:Q×Σ→Q×M, a set of  final states F, and a 
start state q0∈Q. 

The transition function δ is represented as a set of transitions in the form ɑ→β for n-tuple of 
arguments ɑ=(s,σ),  n-tuple of  results β=(d,m),  input s∈Q,  transition character σ∈Σ,  output 
d∈Q, and comparator m∈M. Each final state is in the form q→(n,m) for q∈Q, n∈ℕ1, and m∈M. No 
two final states have the same q — ∄x,y|x,y∈F∧x≠y∧x.q=y.q. For x∈δ, it is said that x is a 
sensitive transition when x.m=≡ and an insensitive transition when x.m=≋.

In order for the machine to work in the required way, it must be well defined, which requires 
additional constraints on the formal definition. The first way to analyze a string w on a well-defined 
phrase machine is called sensitive analysis. In this type of analysis, the phrase machine works like a 
finite automaton. The second way to analyze a string w by a well-defined phrase machine is called 
insensitive analysis. 
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The formal description of the insensitive analysis is shown in pseudocode in Figure 1.

An advanced grammar can be compiled to a phrase machine using the phrase symbols in the 
grammar.

The result of classifying each string is the n-tuple(n,m) for n∈ℕ0 and m∈M. 

2.8 Modules of a parsing machine

After defining the different objects that are used in the machine, this section will introduce the  
modules that work with these objects. 

The first module in a machine is called a supplier. This module outputs sequences of bits to 
the next module. There is at least one supplier in a machine.

A scanner is called the module that accepts a sequence of bits from the supplier and decodes  
them into  characters  that  it  outputs  to  the  next  module  in  the  machine.  The  decoding  can  be 
according  to  different  types  of  standards,  but  the  decoding  is  assumed to  be  according  to  the 
Unicode standard used by the machine. 

For  each  decoded  character  φ from  the  input  data,  the  scanner  outputs  a  token  (t-
character,φ,ɑ).  This  module  serves  as  a  "border"  in  the  machine  that  separates  the  bit 
operations and the token operations. 

A lexer is the module that accepts tokens from the previous module and outputs the same or  
different tokens to the next module, and the tokens that are output depend on the specific lexer.  
There can be zero (meaning a lexerless machine) or more lexers, all ordered one after the other and 
all after the scanner.
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Function INSENSITIVE:Σ*→ℕ0×M  with a parameter w
 1. begin
 2.   c←q0, i←0 ▷ preparation
 3.   while i<|w| do ▷ steps
 4.     l←LOWER(wi), u←UPPER(wi) ▷ variants of wi

 5.     if l=u then ▷ test for one variant
 6.       t|t∈δ∧t.s=c∧t.σ=l ▷ search
 7.       if ∄t then return (0,≡)  ▷ failure if ∄t
 8.       c←t.d ▷ next state
 9.     else
10.       L|L∈δ∧L.s=c∧L.σ=l ▷ search
11.       if ∄L then return (0,≡)  ▷ failure if ∄L
12.       U|U∈δ∧U.s=c∧U.σ=u ▷ search
13.       if ∄U then return (0,≡)  ▷ failure if ∄U
14.       if L.m= ∧U.m=  then c←L.d   ≋ ≋
15.       else if L.m=  then c←L.d≋ ▷ next state
16.       else if U.m=  then c←U.d≋ ▷ next state
17.       else c←L.d  ▷ preference of L
18.     i←i+1  ▷ next character
19.   f|f∈F∧f.q=c ▷ search
20.   if ∃f return (f.n,f.m) ▷ success if ∃f
21.   return (0,=) ▷ failure
22. end

Figure 1: Pseudocode for insensitive analysis by a phrase machine



No strict  restriction  is  placed  on  the  type  of  grammar  in  the  lexer  specification,  but  for 
convenience, a normal grammar G=(N,-,-,-) will be used. The rule in the lexer grammar, based 
on which the lexer accepts the longest possible sequence of tokens, is denoted by q. The traditional 
way the lexer works changes (if there is no rule in the grammar that accepts the current data, it is an 
error) by defining a new one. At any moment of the lexer's work:

• If rule q is uniquely established (after at least one accepted token), then:

1. The lexer outputs t-sequence(n,e,ɑ) token, where n∈N is the name of q and e is a 
string of the names of the accepted t-character tokens based on rule q. If the machine 
works with certain attributes, then the lexer adds them to ɑ; 

2. The lexer removes the used t-character tokens;

3. The analysis starts over with the remaining tokens that have been accepted by the scanner. 

• If the lexer finds that rule q will not be established, then:

1. The lexer outputs to the parser the first of the tokens it received from the scanner;

2. The analysis starts over with the remaining tokens.

• At the moment the lexer reaches its limit (if any) before rule q is uniquely established, then:

1. The lexer outputs a t-limit(Q) token to the parser, where Q is the set of rule names that 
the lexer did not establish that they do not accept the string of tokens accepted from the 
scanner;

2. The analysis stops.

• If the lexer needs to analyze only one remaining token of type t-eof, then:

1. The lexer sends an eof token to the next module;

2. The analysis stops.

A lexer that works in the described way is called a continuous lexer. 

A  parser is  called the module that  accepts input  tokens,  analyzes them based on a given 
specification, and outputs syntax structure construction commands (short for just commands).

An  optimizer is  called the module that  accepts commands and outputs the same or other 
commands to the next module, where the commands output depend on the specific optimizer.

A builder is called the module that accepts commands from the previous module and performs 
activities  that  are  related  to  the  syntax structure  of  the  tree.  The builder  module  is  a  "border" 
between working with commands and working with syntax structures.

A  filter is called the module that accepts syntax structures and outputs the same or other  
syntax structures, and the structures that are output depend on the particular filter.

2.9 Syntax trees

A popular understanding is that the abstract syntax trees may not contain all possible nodes 
labeled with nonterminals and may not contain certain nodes when they are implied by the context. 
These informal definitions, while expressing the difference between trees, leave much unclarity as 
to how much information is "enough" to distinguish different parts of a tree and by what criteria a 
particular tree becomes abstract.

To derive a syntax tree, the builder uses facts. The set of all facts is defined by Φ. Depending 
on the relationships between the objects in the parser grammar, groups of facts derived from the  
advanced grammar A=(-,-,-,-,R,-) are distinguished, which is used for parsing by the parser 
in the machine:

• Which alternation is in which rule or group;

• Which concatenation is in which alternation;
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• Which token is analyzed by the parser as part of the set that is defined by a particular symbol,  
before the token is output to the builder;

• Which nonterminal is referenced by which reference symbol.

Depending on the repetition of a given symbol in A, several types of facts are distinguished. 
These facts are mutually exclusive for each individual symbol and are as follows:

• skippable   — exists for the symbol ωk∈Ω that can be recognized in the input data zero or one 
number of times. Formally, there is one fact  (f-skippable,k) for each of the symbols 
ωk|ωk∈Ω∧REPEAT(ωk)=(0,1);

• single   — exists for the symbol ωk∈Ω, which must be in the input data exactly once. Formally, 
there  is  one  fact  (f-single,k)∈Φ for  each  of  the  symbols  ωk|
ωk∈Ω∧REPEAT(ωk)=(1,1);

• array   — exists for the symbol ωk∈Ω, which must be in the input data, when the minimum and 
maximum number of repetitions of the symbol are equal, are greater than one, and are a finite  
number.  Formally,  there  is  one  fact  (f-array,k,n)∈Φ for  each  of  the  symbols  ωk|
ωk∈Ω∧REPEAT(ωk)=(n,n)∧n>1∧n≠∞;

• list   — exists for the symbol ωk∈Ω, which must be in the input, when the minimum number of 
occurrences of the symbol is less than the maximum number and the maximum number is 
greater than one. Formally, there is one fact (f-list,k,n,m)∈Φ for each of the symbols 
ωk|ωk∈Ω∧REPEAT(ωk)=(n,m)∧n<m∧m>1;

The facts that the builder possesses are defined by K⊆Φ. It is assumed that the parser has all 
the knowledge Φ and that the builder uses all the knowledge it possesses. 

The  syntax  trees  are  classified  according  to  the  structure  of  the  advanced  grammars  in 
AABNF.  One  of  the  most  important  properties  of  the  advanced  grammars  is  that  they  have  a 
minimum and maximum number of repetitions for the individual elements.

According to the information contained in the tree, the syntax trees are as follows:

• Concrete   — a syntax tree that is built based on all available facts, when К=F;

• Abstract   — a tree that is built without using at least one required fact, when К⊂F. This means 
that the maximum number of abstract trees is 2|F|-1 (to be sure that the tree is not concrete, 
one is subtracted from the number of facts).

Commands for preparation (type d-prepare), unpreparation (type d-unprepare), enter 
for a rule (type  d-rule-enter), success for a rule (type  d-rule-success), back for a rule 
(type  d-rule-back), failure for a rule (type  d-rule-fail), enter/success/back/failure for a 
group  (type  d-group-enter/success/back/fail),  enter/success/back/failure  for  a 
concatenation (type  d-con-enter/success/back/fail), token forward (type  d-token-
front), token backward (type d-token-back), next element (type d-next), previous element 
(type  d-previous),  creation/destruction  for  a  list  (type  d-list-create/destroy), 
creation/destruction  for  an  array  (type  d-array-create/destroy),  found  error  (type  d-
error), success of the analysis (type  d-success), and end of the analysis (type  d-done) are 
distinguished.

2.10 Conclusions

In the second chapter, a conceptual model of a parsing machine is presented, which is suitable 
for the implementation of various strategies, methods, approaches, and algorithms that are popular 
in the literature. Also defined is a new type of lexer module functionality that enables the parser  
module to parse according to the case of the characters in the lexemes and to accept characters  
according to character ranges.
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An addition to the ABNF is proposed, with which the advanced grammars can be defined. A 
phrase machine model is proposed that categorizes in advance the different phrases in the parser  
grammar in order to speed up the analysis. A modification of the known in the literature way of  
operation of the scanner and lexer modules is proposed. New modules, such as a supplier and an 
optimizer, are defined.

The common architecture of a parsing machine is oriented more towards the types of data that  
are received and sent by the modules in the machine and less towards how they are processed.

3 Tunnel parsing algorithm

In this chapter, the Tunnel Parsing (TP) algorithm is proposed and discussed as an algorithm 
that is executed by the parser module in the parsing machine, introduced in the previous chapter.

3.1 Basic concept of the algorithm

The goal of the algorithm is to efficiently execute a push-down automaton having transitions  
with  advanced symbols  and countable  repetitions,  which is  represented as  connected transition 
diagrams. For efficient execution, the algorithm groups certain transitions and states of the push-
down automaton into “parts”.

The situation is complicated by the fact that in the ABNF grammars there may be a repetition  
of  a  reference  (for  example,  5*8R),  with  the  referenced  rule  generating  an  empty  word  (for 
example, R=0*1"x"). In this situation, the TP parses as many repetitions as possible using tokens 
(for example, "xx"), and the remaining number of repetitions (3) up to the minimum required (5) 
are performed without tokens. The algorithm does not enter an infinite loop when the repetition is to 
infinity (for example, 5*R).

3.2 Stacks

The TP algorithm uses an execution stack that consists of elements represented as an n-tuple 
(c,n) for control state c and the number of archived depth stack elements n∈ℕ0.

At  runtime,  the TP algorithm uses  a  depth stack that  consists  of  segments.  One segment 
contains information about the operations that the parser can perform depending on the current input 
token. Each segment is represented as an n-tuple (p,n,m,rm,rd,rn) for parent p∈(NΩ∪GΩ∪N), 
minimum number of repetitions n,  maximum number of repetitions m,  minimum router rm of the 
r-minimum type, inner router rd of the r-inner type, and next router rn of the r-next type. 
If p∈(NΩ∪GΩ), then (n,m)=REPEAT(p), and if p∈N, then n=1 and m=1.

For  the  different  analyses  that  follow  below,  a  repetition  stack with  N0 elements  called 
counters is used. This stack contains the number of repetitions that have already been found (or are  
in the process of being found) for a given advanced symbol. Repetitions are counted for the symbol 
ω∈Ω when for (n,m)=REPEAT(ω) is true that n>1∨(m>1∧m≠∞) (the repetition is countable).

At runtime, the TP algorithm can progress backward in the automata. To make this possible, 
the items in the depth stack are not deleted but are moved to the archive depth stack in an operation 
called  archiving. Similarly, moving an element from the archive depth stack to the depth stack is 
called restoring.

The  archive  repetition  stack works  in  a  similar  way — when the  algorithm moves  from 
recognizing  a  given  advanced  symbol  to  the  next,  the  number  of  repetitions  that  have  been 
recognized so far for the given element (if any) is archived in the archive repetition stack.
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3.3 Automata

For the purpose of analyzing a string of tokens based on an advanced grammar, a sequence of  
automata is  created.  Each automaton is  created recursively by applying various templates from 
which states and labeled transitions are created. 

For each symbol  (s-concatenation,ω0,…,ωn-1), states and transitions are created by 
applying the template in Figure 2. States A and D are not created, but they are the context in which 
the template is applied. In Figure 2, k is the sequence number of the concatenation in the alternation 
that uses the concatenation. The pairs of states  Xk*2-1 and Xk*2, as well as the transitions between 
them, for k∈[1..n-1], are created only if n>1. Each pair Xi*2 and Xi*2+1, for i∈[0..n-1], is 
the context in which the template for ωi is applied.

The parent of the state, which is created when applying a given template for the symbol ω|
(HΩ∪NΩ∪GΩ∪YΩ) is  p|p∈(R∪GΩ)∧p↦ɑ↦β∧(β↦ω∨β↦γ↦ω) for  Π(ɑ)=s-alternation, 
Π(β)=s-concatenation and Π(γ)=s-repeat.

From here  on,  only  reduced  and  well-defined  advanced  grammars  that  do  not  have  left  
recursion are worked with. This removes certain kinds of ε-cycles (but many other kinds remain) 
that can exist in the automata built based on the grammar.

3.3.1 Finding of the shortest paths

It  is  chosen that if  there are two ε-paths with the same number of ε-transitions that pass  
through the states created for two different concatenations in the same alternation, then the shortest 
path is the one that passes through the states for the concatenation with a lower sequence number in 
the alternation.

During the parser's generation, the shortest ε-path, if any, from the start state to the final state 
created for each individual rule is first found. The shortest ε-path, if any, from the start state to the  
final state created for each individual group is then found.

Based  on  the  found  ε-paths  for  rules  and  groups,  the  shortest  ε-paths  for  jumping each 
individual symbol ω located in a given concatenation are found. This is done by searching for the 
shortest ε-path between states  Xi*2 and  Xi*2+1,  which are created when applying the template in 
Figure  2 for  symbol  ωi in  concatenation  k=(s-concatenation,ω0,…,ωn-1),  where 
i∈[0..n). Based on all ε-paths found so far, found are the ε-paths for each symbol ωi from the 
state after ωi to the final state for the rule (or the group) that uses the alternation that uses k.

3.3.2 Reachable advanced symbols

Any symbol  ω∈HΩ that is the label of a given transition  t, is called  reachable from state  q, 
when there exists at least one sequence of zero or more ε-transitions from q to the beginning of t. A 
key state is any state that is a start state (of a rule or group) and any state after a given symbol that is  
created by applying the pattern in Figure 2.

During the parser's generation, a search is performed for the reachable states from each key 
state. The search is similar to the popular depth-first search, but with a few differences:

1. The only way a search can jump a symbol (to go through the states and transitions that are  
created for the symbol) is by traversing the symbol's ε-path, if it exists;
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2. The transitions (d-con-enter,k) with lower k, which are not part of the chosen ε-path 
(if any) for the parent of q, are used for the search first; 

3. When searching from a given state q, the transition at the chosen ε-path (if any) for the parent 
of q is used for the search last.

The result of the search for the reachable symbols from state q is the reachable tree of q, in 
which the descendants of each node are ordered in the order they were found. The label of a given 
leaf in the reachable tree is equal to the label of the transition that was used to find the leaf — the  
symbol ω∈HΩ.

From  the  construction  of  advanced  grammar  automata  and  the  definitions  of  reachable 
advanced symbols, it follows recursively that each reachable advanced symbol from a given initial 
state does not conflict with itself in the following situation:

1. The state is created for a group (or for a rule that is referenced by a reference);

2. The group (or the reference) repeats at least two times;

3. For the group (or the rule), there is a chosen ε-path.

3.3.3 Conflicts

In the advanced grammars, there are character, phrase, and eof symbols, as well as countable 
repetitions for them. As a consequence, different new types of conflicts between symbols become 
possible during parsing based on these grammars, which do not occur during the work of other 
parsing algorithms using other grammars.

If in the reachable tree of state q for ωa∈HΩ in leaf's label la and symbol ωb∈HΩ in leaf's label 
lb|la≠lb is true that Ψ(ωa)∩Ψ(ωb)≠∅, then it is said that ωa and ωb are in conflict from q. 

The set E of leaves in the reachable tree of q is here considered. During the generation of the 
parser, all the different conflicts Ei are derived from this set E. Each conflict Ei contains an ordered 
set  of  leaves  in  E,  in  the  order  they  are  found,  with  advanced  symbols  as  labels,  as  well  as 
information (shown below) about the particular conflict.

Several  conflict  types  are  distinguished  and  are  represented  as  n-tuples,  where  the  first 
element  is  the  conflict's  type,  l∈L for  L={l-character,l-sensitive,l-
insensitive,l-universal,l-eof}, and the last element, s, is an ordered set of the leaves 
in E labeled with the advanced symbols that are in conflict:

• (l-character,f,t,s) — a character conflict for f,t∈U and f≤t, which contains the 
ordered set s from leaves in E with labels from(s-character,x,y,m), such that f≤r≤t 
for at least one r|r∈Δ(x,y,m);

• (l-sensitive,c,n,s) —  a  sensitive  conflict for  a  category  c∈C,  a  phrase  index 
n=SENSITIVE(p) with a phrase p, and an ordered set s from leaves in E with labels from:

• At least one symbol (s-phrase,c,pn,≡)∈PSΩ; 

• Zero or more symbols (s-phrase,c,q, )∈PI≋ Ω, such that n=SENSITIVE(j) for at 
least one j∈Δ(q, )≋ ; 

• Zero or more symbols (s-phrase,c,-,-)∈PАΩ;

• (l-insensitive,c,n,s) — a  insensitive conflict for  category  c∈C,  a  phrase index 
n=INSENSITIVE(p) for a lowercase phrase p, and an ordered set s from leaves in E with 
labels from:

• At least one symbol (s-phrase,c,qn, )∈PI≋ Ω;

• Zero or more symbols (s-phrase,c,-,-)∈PАΩ;
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• (l-universal,c,s) — a universal conflict for a category c∈C and an ordered set s from 
leaves in E with labels from at least one symbol(s-phrase,c,-,-)∈PАΩ;

• (l-eof,s) — eof conflict for an ordered set  s from leaves in E with labels from at least 
one symbol (s-eof)∈FΩ.

That a given token  h∈H belongs to a given conflict  Ei is denoted as  h∈Ei. The cases of a 
token belonging in conflict are as follows:

• (t-character,u)∈Ei, if and only if Ei=(l-character,f,t,-) and f≤u≤t;

• (t-sequence,c,e)∈Ei, if and only if:

• Ei=(l-sensitive,c,n,-) with n=SENSITIVE(e); or

• Ei=(l-insensitive,c,n,-) with n=INSENSITIVE(e); or

• Ei=(l-universal,c,-);

• (t-eof)∈Ei, if and only if Ei=(l-eof,-).

3.3.4 Trees with empty nodes

An original  syntax  tree  is  ε-condensed when  every  ε-node  in  the  syntax  tree  is  optimal 
according to the following optimality criteria:

1. Each ε-node in the tree has as few subnodes as possible, according to the grammar from 
which it is built;

2. If more than one concatenation in a given alternation can be the basis for the creation of the  
same number of ε-nodes, then the nodes based on the concatenation with the lower sequence 
number in the alternation are created;

3. The non-ε-nodes are ordered before the ε-nodes when all these nodes are created based on the  
same symbol (as a consequence, a possible combinatorial explosion is prevented).

If two different syntax trees built based on the same grammar and for the same input tokens 
become exactly the same when transformed into ε-condensed form, then they are ε-equivalent. The 
transformation replaces all ε-nodes with their optimal variant.

3.4 Tunnels

The  information  contained  in  each  tunnel  is  about  changing  the  various  stacks  that  the 
algorithm uses and about the commands that can be sent to the next module. A tunnel is represented  
as  an  n-tuple  (t,e,o,d,a) for  the  tunnel's  type t∈{τ-first,τ-inner,τ-last,τ-ε-
inner,τ-ε-last,τ-ε-direct-front,τ-ε-direct-back,τ-ε-main-front,τ-ε-
main-back},  a  sequence  of  commands e,  a  sequence  of  operations o over O,  a  number  of 
elements to remove d∈ℕ0,  which must  be removed from the repetition stack,  and a number of 
elements to add a∈ℕ0 (each with a value of one), which must be added to the repetition stack (after 
d number of elements are removed). 

During the parser's generation, different types of tunnels are extracted based on the ordered  
set s in a given conflict Ei, which is an element in a nonempty set of conflicts E, which are derived 
from the leaves of the reachable tree Z for key state q with traversal of Z. For extraction purposes, 
an extraction stack of segments is created and:

• If q is a state for rule B→ɑ, then the segment of B is added to the extraction stack; or
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• If q is a state for a group, then the group's segment is added to the extraction stack.

During the extraction of the tunnels, the newly added segments to the extraction stack are only 
for references or groups. The tunnels for conflict Ei are extracted as follows:

• A tunnel of the τ-first type is extracted from q to the first element in s;

• A tunnel of the τ-inner type is extracted between any two adjacent elements in s (from one 
element to the next in the ordered set);

• If no ε-path is chosen from q to the final state for the parent of  q, then a tunnel of the  τ-
last type is extracted from the last element in s to q;

• If there is a chosen ε-path from q to the final state for the parent of q, then a tunnel of the τ-
ε-inner type is extracted from the last element in s to the end of the ε-path. For each tunnel 
of the τ-ε-inner type, a tunnel of the τ-ε-last type is extracted from the final state for 
the parent of q to q.

If, for a key and nonstart state q, there is a chosen ε-path to the final state for the parent of q 
and the conflict set for q is empty, then a tunnel of the τ-ε-direct-front type from q to this 
final  state  is  extracted.  In  the opposite  direction,  a  tunnel  of  the  τ-ε-direct-back type is 
extracted.

For each rule (or a group) for which an ε-path is chosen, a tunnel of the τ-ε-main-front 
type is extracted from the start to the final state. In the opposite direction, a  τ-ε-main-back 
tunnel is extracted.

3.5 Routers

For each key state  q,  an object called a router is created. Routers are intended to contain 
precomputed information about how, during parsing, the parser can continue the analysis from a 
given automaton state. A router is represented as an n-tuple (t,p,cε) for a router's type t∈{r-
origin,r-minimum,r-inner,r-next}, an ordered set of paths p, and continuation control 
state cε. A path in a router is defined as Ei→c for a conflict Ei derived for q and a control state (c-
state for short) c.

The different types of routers are created in the following situations:

• r-origin — for each start rule in S;

• r-minimum —  for  each  symbol  ω|ω∈(NΩ∪GΩ)∧REPEAT(ω)=(n,m)∧n>1 (for  each 
reference or group that repeats at least twice);

• r-inner — for each symbol  ω|ω∈(NΩ∪GΩ)∧REPEAT(ω)=(n,m)∧n<m∧m>1 (for each 
reference or group for which the minimum number of repetitions is less than the maximum 
number of repetitions and the maximum number of repetitions is more than one);

• r-next — for each symbol ω|ω∈(NΩ∪GΩ∪HΩ) (for all references, groups, and all advanced 
symbols that directly define tokens).

The paths in the different types of routers are created as follows:

• In  r-origin,  r-minimum, and  r-inner, one path is created per each first leaf in the 
ordered set of leaves s in each conflict Ei that can be derived from the leaves E of the rule's 
reachable tree for the rule's (or group's) start state for which the router was created; 

• In  r-next,  one path is created for each first leaf in the ordered set of leaves  s in each 
conflict Ei, which can be derived from the leaves E of the reachable tree for the state after the 
symbol for which the router was created.
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3.6 Control objects

The TP algorithm uses a set of control objects (c-objects, for short) that use different tunnels 
and routers. Each control object consists of at least one control state.

The number of control states in a control object depends on the control object. Each control  
object indicates "where" in the automata the parser reached, and each control state defines "which" 
operations are to be performed. Each tunnel is executed in a specific context that represents all 
stacks at a given time.

All the operations that are defined by the different c-states are such that the parser follows 
exactly the automata that were created for the advanced grammar, always moving along the shortest  
path from one state to another.

Origin control object
One origin c-object is created for each start rule J∈S. Before the parser starts analyzing the 

input tokens, depending on the selected start rule  J,  the parser adds the created origin c-object 
(created for J) as the first element in the execution stack. An origin c-object is an n-tuple  (c-
origin,{use},r) for one c-state use and a router r of the r-origin type.

Terminal control object
One terminal c-object is created for each terminal state in the automata. The purpose of this c-

object is to increase the execution stack by one element before the parser starts working with the  
next token. A terminal c-object is an n-tuple (c-terminal,{use},r) for one c-state use and a 
router r of the r-next type.

Token control object
One token c-object is created for each leaf in the ordered set of leaves s in each conflict Ei 

that can be derived from the leaves E of a given reachable tree when the symbol in the leaf's label 
has a maximum number of repetitions equal to one. A token c-object is an n-tuple  (c-token,
{use,used},n,t,τ) for two c-states (use and used), a next c-object n, a c-object t of the c-
terminal type, and a tunnel τ of the τ-first or the τ-inner type. 

Batch control object
The batch c-objects are created similarly to the token c-objects, but when the leaf's label has a  

maximum number of repetitions greater than one. This c-object has complex functionality because it  
iterates ω both forward and backward without the help of other c-objects. The way the c-states in 
this object work is that they accept as many h∈Ψ(ω) as possible. A batch c-object is an n-tuple (с-
batch,{use,repeat,back,used},n,t,τ) for the four types of c-states, a next c-object n, 
a c-object t of the c-terminal type, and a tunnel τ of the τ-first or the τ-inner type. 

Epsilon-origin control object
The  epsilon-origin c-objects are created for each  cε in a router of  r-origin type, that is 

created for a given start rule J∈S, for which there is a chosen ε-path, because J⇒*ε. The purpose of 
this c-object is to be used when the parser starts the parsing for the start state of J, but there is no 
path  in  the  said  router  for  the  first  input  token.  An  epsilon-origin  c-object  is  an  n-tuple  (c-
epsilon-origin,{use,used},τf,τb) for the two types of c-states, a forward tunnel τf of 
the τ-ε-main-front type, and a backward tunnel τb of the τ-ε-main-back type.

Epsilon-next control object
The epsilon-next c-objects are created for each key state  q (other than the start of a rule or 

group), from which there is a chosen ε-path to the final state for q's parent. The only c-state of this 
type of c-object is used as cε in a router r of the r-next type, which was created for q. Once the 
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parser is in state  q, then the parser will search for a path in  r for the current token. If no path is 
found, then the single c-state of that object replaces the top of the execution stack. An epsilon-next 
c-object is an n-tuple (c-epsilon-next,{use},τf,τb) for one c-state, a forward tunnel τf 
of the τ-ε-inner type, and a backward tunnel τb of the τ-ε-last type.

Epsilon-fill control object
One epsilon-fill c-object is created for each router of the r-minimum type when the rule or 

the group for which this router is created has an ε-path. The single c-state is used as cε in the said 
router and is never added to the execution stack because it is used by other c-objects. An epsilon-fill  
c-object is an n-tuple (c-epsilon-fill,{use},τf,τb) for one c-state, a forward tunnel τf 
of the τ-ε-main-front type and a backward tunnel τb of the τ-ε-main-back type.

Passage-origin control object
A passage-origin c-object is created at the end of a list of c-token or c-batch c-objects in 

a router of the r-origin type that is created for a given start rule J∈S for which there is a chosen 
ε-path, because  J⇒*ε. In order to get to the use of this c-object, the parser has run through all  
possible ways of parsing the input tokens and progressed backward until it reached the start state for  
the start  rule that  has a chosen ε-path.  A passage-origin c-object  is  an n-tuple  (c-passage-
origin,{use,used},τf,τb) for two c-states, a forward tunnel τf of the τ-ε-inner type, 
and a backward tunnel τb of the τ-ε-last type.

Passage-minimum control object
A passage-minimum c-object is created at the end of a list of  c-token or  c-batch c-

objects in a router r (of the r-minimum type) that is created for a given start rule J∈S for which 
there is a chosen ε-path, because J⇒*ε. In order to get to the use of this c-object, the parser used all  
c-token and c-batch c-objects that are arranged in a list of c-objects in the minimum router r. 
A passage-minimum c-object is an n-tuple  (c-passage-minimum,{use},τ) for one c-state 
and a tunnel τ of the τ-ε-inner type. 

Passage-next control object
A passage-next c-object is created at the end of the list of  c-token or  c-batch c-objects in a 

router of the r-next type that is created for a given state q, from which there is a chosen ε-path to 
the final state for the parent of q. In order to get to the use of this c-object, the parser has performed 
all possible ways to parse the input tokens after the given state and progressed backward. A passage-
next c-object is an n-tuple (c-passage-next,{use},τ) for one c-state and a tunnel τ of the 
τ-ε-inner type.

Back-origin control object
A back-origin c-object is created at the end of the list of  c-token and  c-batch control 

objects in a router of type r-origin that is created for a given start rule for which no ε-path is  
chosen. This c-object is similar to the passage-origin c-object with the difference that there is no ε-
path selected for the start rule, and for this reason, the parser goes from the state for the last  c-
token or c-batch c-object directly to the start state of the start rule. A back-origin c-object is an 
n-tuple (c-back-origin,{use},τ) for one c-state and a tunnel τ of the τ-last type.

Back-universal control object
A back-universal c-object is created at the end of the list of c-token or c-batch c-objects 

in a router of the r-next type, which is created for state q after symbol ω∈(NΩ∪GΩ∪HΩ), where 
from  q there is no chosen ε-path to the final state for the parent of  q and for  ω∈(NΩ∪GΩ) no 
repetitions are counted or ω∈HΩ. When the parser progresses backward and returns to state q, then 
this c-object executes the tunnel from the final state for the parent of  q to  q. A back-universal c-
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object is an n-tuple (c-back-universal,{use},τ) for one c-state and a tunnel τ of the τ-
last type.

Back-countable control object
A back-countable c-object is created at the end of the list of c-token or c-batch c-objects 

in  router  r of  the  r-next type,  which  is  created  for  state  q,  after  symbol  ω∈(NΩ∪GΩ) with 
segment  g from which there is no ε-path to the final state for the parent of  q and repetitions are 
counted for ω. The functionality of this c-object is similar to that of a back-universal c-object, with  
the difference that the parser restores one element to the repetition stack and does backward ε-fill if  
necessary. A back-countable c-object is an n-tuple (c-back-countable,{use},g,τ) for one 
c-state, the said segment g, and a tunnel τ of the τ-last type.

Back-minimum control object
A back-minimum c-object is created at the end of the list of c-token or c-batch c-objects 

in an r-minimum router that is created for a given rule (or a group) for which no ε-path is chosen.  
In order to get to the use of this c-object, the parser has performed all possible ways to analyze the  
input tokens with repetitions (to analyze the minimum number of repetitions) of the given rule or 
group  and  is  now  progressing  backward.  A back-minimum  c-object  is  an  n-tuple  (c-back-
minimum,{use},τ) for one c-state and a tunnel τ of the τ-last type.

Back-inner control object
A back-inner c-object is created at the end of the list of c-token or c-batch c-objects in a 

router of the r-inner type that is created for a given reference (or a group) for which no ε-path is  
chosen. In order to get to the use of this c-object, the parser has performed all possible ways of  
analyzing the input tokens by a repetition (analyzing more than the minimum number of repetitions)  
of the given rule (or a group) and is now progressing backward. A back-inner c-object is an n-tuple 
(c-back-inner,{use},τ) for one c-state and a tunnel τ of the τ-last type.

Unwind control object
Only one global unwind c-object is created in the control layer. During the execution of the 

operations that are defined by this c-object, the parser archives the depth stack (similar to exiting a  
function). If the minimum number of repetitions has not been analyzed for the parent of the archived 
segment,  then the parser  attempts  to  repeat  the parent.  If  a  repetition cannot  be done,  then,  if  
possible, the parser performs ε-fill and then tries to continue the parsing after the parent of the  
segment. If the minimum number of repetitions for the parent of the archived segment has already 
been analyzed but the maximum number has not, then the parser attempts to repeat the parent, but  
on failure it does not perform ε-fill. If a repetition is not possible, then the parser tries to continue 
after the parent of the segment. If continuing past the segment's parent is not possible, the parser  
will start to progress backward. An unwind c-object is an n-tuple (c-unwind,{use}) with one 
c-state.

Restore control object
During the parser's generation, only one global restore c-object is created in the control layer. 

This  c-object  attempts  to  restore  one  segment  at  each  step  and,  at  the  same  time,  executes  a  
backward tunnel, if necessary, from the final state of the rule (or the group) in which the segment's  
parent  is  located to  the state  after  the segment's  parent,  along with,  if  necessary,  performing a 
backward ε-fill depending on the number of repetitions of the segment's parent analyzed so far. A  
restore c-object is an n-tuple (c-restore,{incomplete,complete}) with two c-states.
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3.7 Parsing

Once all the stacks are prepared, all the tunnels are extracted, all the routers and the entire  
control layer are created, then the parser running the TP algorithm can start parsing input tokens. 
The parsing starts by placing the origin c-object that is created for the selected start rule J∈S and 
continues until the parser sends a command (d-done). If the parser aims to find only one syntax 
tree, then parsing ends at the first output of (d-success,true). If the parser aims to parse until 
it finds the first error in the input tokens, then the parsing ends after the first command (d-error) 
is output.

3.8 Properties of the Tunnel parsing

A parser running with the TP algorithm uses the control objects and their states, the tunnels,  
and the routers to transition from one internal state to another. According to all of the definitions 
above:

• The algorithm parses based on any non-left recursive, well-defined, and reduced advanced 
grammar;

• The memory used by the algorithm is linear to the number of tokens in the worst case;

• The  algorithm parses  in  linear  time  based  on  any  grammar  that  can  be  derived  from a 
deterministic stack automaton, and if there is no recursion in the grammar, the parsing can be 
performed with a constant amount of memory;

• The parsing time is exponential in the worst case for some inputs that are parsed based on 
certain grammars. To deal with the exponential parsing time, memoization can be used;

• Some LL(k>1) grammars can be parsed with k-1 token look-ahead by trivial optimization;

• The  algorithm  can  parse  deterministically  and  in  linear  time  based  on  some  ambiguous 
grammars, and in this case, it outputs the commands to create an ε-condensed tree.

In the TP algorithm, the number of operations performed by the parser at each iterative step is  
independent of the number of input symbols.

The non-ε-nodes are ordered before the ε-nodes when all of the nodes are created for a given 
symbol, which is a consequence of how the unwind c-object works, how the tunnels are extracted,  
and the definitions of the reachable symbols.

3.9 Conclusions

The  TP algorithm  offers  an  efficient  execution  of  a  push-down  automaton  with  phrase 
symbols and countable repetitions, which is represented as connected transition diagrams.

In the chapter,  it  is  shown that  templates are used to create automata for  the rules in an  
advanced grammar. The analysis can be sensitive or insensitive to the case of the characters in the  
lexemes. Character ranges are supported directly in the parser grammar. A new subclass of context-
free grammars is determined, based on which strings of tokens can be generated, which the TP  
algorithm can parse in linear time and memory.

4 Profiling of automatically generated parsers

The following practical questions are of interest: how much memory is used by the syntax 
trees generated by a particular parser, what information they contain, and how long it takes to create  
and work with them. 

In order to avoid the development of a large number of grammars by hand (which can also  
increase the risk of mechanical errors), a specially designed tool for the purpose of the dissertation 
is used, and it is called a parser generator profiler (profiler for short). With the help of the profiler, it 
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becomes possible  to  perform a large number of  tests  on different  parsing machines,  which are 
generated by different parser generators.

Roughly speaking,  a  profiler  allows the explicit  input  of  one or several  grammars or the 
programmatic output of an aggregation of grammars differing by selected elements. Then, for each  
of the grammars, the profiler creates executable codes for one or more corresponding parsers using 
external programs. By running different data through the different parsers, comparative information 
about the used resources can be obtained. This process is described below in detail.

For  the  purpose  of  profiling,  template  grammars are  created  that  describe  one  or  more 
grammars in a short form. Each template grammar is represented as a script (a string of characters) 
that is valid according to a script language specially created for the purpose of the dissertation, and 
it is called a template grammar language (template language for short). The template grammars are 
imperatively programmed in the template language.

The grammars in ABNF are directly defined – no additional computations are required to use 
the grammar. In contrast, template grammars define one or more grammars in a short form, and 
therefore additional computations (evaluations) are required to derive all of the  object grammars 
that are defined by the given template grammar. The object grammars are grammars for which no 
evaluation is required.

4.1 Tokens

The lexer module in the parsing machine works like a continuous lexer, as defined above.  
This continuous lexer outputs a limit token (of t-limit type) when the number of characters for 
which the lexer fails to uniquely determine which rule they belong to is more than 224-1, which is 
more than enough. In Figure 4 the grammar in the lexer's specification is shown. 

4.2 Template grammar language

In the parser grammar,  the phrase symbols are used to distinguish the identifiers that  are 
keywords from the others. Keywords in the language are:  rule,  token,  template,  input, 
out, define, in, if, then, and else. 

A template language allows different templates (similar to functions) to be called at different 
places in the script. The template call will be executed during an evaluation, and the result of the 
call will be written directly to the grammar's script at the point of the call.

4.3 Parser generator profiler

The parser generator profiler is a computer program written in C++ that, according to a given 
template grammar script, first generates a sequence of object grammars and a sequence of input  
data. The parsing of the script is performed with the TP algorithm. Each object grammar is then 
automatically  translated  by  the  profiler  to  the  form  used  by  various  parser  generators.  These 
translated grammars are called profile intermediaries. Each profile intermediary becomes an input to 
the various parser generators, which generate files called  profile sources. Each profile source is 
written in a given programming language and is subsequently compiled with the compiler of the 
corresponding language with different compilation options (32/64 bits, optimization level, etc.). The 
compiled files are called profile targets. Each execution of each profile target is called a test. After 
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Figure 4: The lexer grammar in the lexer specification of the template language

identifier   = ('a'-'z' / 'A'-'Z' / '_') 
               *('a'-'z' / 'A'-'Z' / '_' / '0'-'9')
number       = 1*('0'-'9')
comment      = "//"



the successful completion of all tests, the visualization of the used resources (time and memory) is 
performed by the user.

The implementation of the language uses iteration [1, p. 43t] for all of its main functionalities, 
because this  allows on the template language to be developed template grammars with a large  
number  of  grammar  elements.  Various  iteratively  working  machines  in  the  profiler  inherit  the 
PGP_Machine class, which controls the iteration, as part of that code is shown in Figure 5.

A diagram of the various steps involved in the processing of template grammars that can be 
executed by the profiler is shown in Figure 6, where a domain is the set of values for the variators in 
the grammar along with the current template grammar.

4.4 Visualizer 

A specially created for the goal utility (visualizer) written in JavaScript, HTML and CSS is  
used to visualize the test results.
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Figure 5: Functions to control the iteration

ECODE PGP_Machine::Run(void) {
  while(true) {                         
    ECODE ecode = Progress();           // try to do a step
    if (ecode == E_DONE) return E_DONE; // return when done 
    if (ecode != E_OK) return ecode;    // return on an error
  }
}
ECODE PGP_Machine::Progress(void) {
  switch(FState) {                
    case JS_ERROR: return E_ERROR;  // had an error
    case JS_DONE : return E_DONE;   // already done
    default: if (!Step()){ FState = JS_ERROR; return E_ERROR;} 
  }
  return E_OK; // made а progress
}
bool PGP_Machine::Done(void){ FState = JS_DONE; return true;}

Figure 6: First core functionality of the profiler 



4.5 Experiments

Measuring the resources that are used by parsing machines at runtime is necessary, because it  
matters for practical reasons whether the parsing will complete in a second or two [16]. 

The settings of different parsers, parser generators, and compilers are usually large in number,  
making it  difficult to determine the impact of different combinations of settings on an arbitrary 
parser that parses based on an arbitrary grammar and analyzes arbitrary data in an arbitrary software 
environment on arbitrary hardware and is generated and compiled by a specific parser generator and  
compiler with arbitrary settings. For this reason, experiments are done with as short grammars as 
possible to eliminate "noise" in the results when there are a large number of different elements in  
the grammar.

Four  experiments  are  conducted.  The  design  of  each  experiment  aims  to  measure  the 
resources used (time and memory) by the different parsers generated by different parser generators  
for different object grammars that are derived from different template grammars.

Experiment 1. Resources during translation
The  purpose  of  the  experiment  is  to  give  an  empirical  insight  into  the  effectiveness  of  

different parsers, without taking into account the complexity of the lexer and parser in the parsing  
machine, and not according to their description in the literature or the documentation of the parser  
generator, but based on their practical implementations.

Experiment 2. Resources for in depth parsing 
The purpose of the experiment is to show how many resources are used for "in depth" parsing 

and the construction of different types of syntax trees with such a structure.

Experiment 3. Resources for a concatenation
The  purpose  of  the  experiment  is  to  show  how  much  the  number  of  elements  in  a 

concatenation affects the resources used.

Experiment 4. Resources for skippable elements
The purpose of the experiment is to show the resources used when the grammar has skippable 

elements that are never found in the input data.
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Figure 7: Graphical interface of the visualizer with loaded test results



4.6 Conclusions

The fourth chapter presents the design and development of  a grammar metaprogramming 
language in which the template grammars needed to perform the experiments in the dissertation are 
programmed.

The profiler collects measurements of the resources used during recognition and parsing based 
on various context-free grammars. The visualization of the collected measurements is done with a 
special utility program, also created for the purpose of the dissertation.

Conclusion

The dissertation shows lexical  and syntactic  analyses  of  data,  which are  performed by a 
parsing machine that has a parser module that works with the Tunnel parsing algorithm. A common 
parsing machine architecture is proposed. The functionalities of the modules in the parsing machine 
and the objects that are sent and received by the modules are described in detail.

A template language in which template grammars can be defined and/or programmed, and a  
tool (parser generator profiler) that derives one or more object grammars from a given template  
grammar are shown. The profiler can experiment with different parsing machines that are generated  
by different parser generators based on the derived object grammars.

A good property of the iterative parsing is that a pause can be made after each iterative step.  
Another property of the iterative parsing is that the data the algorithm works with is available in 
instances of data structures (not in the thread dedicated stack) and can more easily be saved to  
(restored from) a memory medium when needed.

Contributions

The  dissertation  contains  the  following  scientific,  scientific-applied,  and  applied 
contributions:

Scientific contributions: 

Н1. A conceptual model of a parsing machine is proposed that is suitable for the implementation 
of  various  strategies,  methods,  approaches,  and  algorithms,  providing  some  additional 
capabilities compared to the existing ones;

Н2. Advanced grammars with phrase symbols are defined as composed of rules and advanced 
symbols, with a close structure to the grammars in augmented Backus-Naur form;

Н3. A phrase machine model is proposed that categorizes in advance the different phrases in the  
parser grammar in order to speed up the analysis.

Scientific-applied contributions:

НП1. The functionality of the parsing machine is described;

НП2. The functionality of the Tunnel parsing algorithm is described as parsing based on any non-
left  recursive advanced grammar,  with the parsing time being linear for  some ambiguous 
grammars  and  for  any  grammar  that  can  be  derived  from  a  deterministic  push-down 
automaton (if the derived grammar has no recursion, the parsing can be performed with a  
constant amount of memory);

НП3. A metaprogramming language for grammars is designed and developed; 

НП4. A parser  generator  profiler  is  designed,  enabling the performance of  tests  (measuring the 
resources used during recognition and parsing) with parsing machines created by different 
parser generators and compilers.
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Applied contributions:

П1. A prototype of a software tool – a parser generator profiler (including a module for visualizing 
the results) is developed, enabling experimentation with a directly entered grammar or with a 
programmatically derived, by the tool, aggregation of grammars;

П2. Experiments are conducted using the profiler.

Future Work

The dissertation touches on many topics that are related to data parsing, and for this reason 
there are many possible ways of development, the most notable of which are as follows:

• The list of commands that are sent by the parser module and accepted by subsequent modules  
can be supplemented with new ones,  so that  not  only syntax trees,  but  also other syntax 
structures can be built; 

• In connection with the advanced grammars, the possibility can be explored that after using the 
lexeme in a given sequence token (of the t-sequence type), the token to be decomposed 
(in  the  input  data  of  the  specific  module)  into  individual  character  tokens  (of  the  t-
character type), one for each character in the lexeme, and these tokens to be used for  
subsequent parsing;

• A natural extension of the current dissertation is the creation of an addition to the Tunnel  
parsing algorithm that will enable parsing based on left-recursive grammars;

• Based on the dissertation, an algorithm can be created that verifies whether the parsing of 
arbitrary data with the Tunnel parsing algorithm based on a specific grammar will always be  
in linear time;

• A possible future improvement of the profiler is adding support for other parser generators 
and  compilers.  The  currently  supported  versions  of  the  various  parser  generators  and 
compilers  should  not  be  removed  so  that  the  tests  can  show  the  development  of  the 
technologies related to the automatic generation of parsers over time. This makes the profiler 
a future-oriented program; 

• Another possible development of the profiler is to measure the compilation time of the profile  
sources and the profile targets, the startup time of the profile targets, and the size of each file.
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