
UNIVERSITY OF PLOVDIV "PAISII HILENDARSKI"
FACULTY OF MATHEMATICS AND INFORMATICS

DEPARTMENT OF COMPUTER INFORMATICS

Nikolay Georgiev Handzhiyski

An iterative parsing algorithm
with application in the profiling of parsers

ABSTRACT

of a dissertation

for awarding the educational and scientific degree "Doctor"

Field of higher education:

4. Natural sciences, mathematics and informatics

Professional direction:

4.6. Informatics and computer science

Doctoral program: "Informatics"

scientific supervisor

Prof. Elena Somova, PhD

Plovdiv

2024

The dissertation work was discussed and directed for defense before a scientific jury, at a
meeting of the "Computer Informatics" department at the Faculty of Mathematics and Informatics
of the University of Plovdiv "Paisii Hilendarski", on 02/28/2024.

The dissertation „An iterative parsing algorithm with application in the profiling of parsers“
contains 163 pages. The list of used literature includes 191 sources. The list of the author's
publications on the topic consists of 6 titles.

The materials for the defense are available in the Dean's Office of the Faculty of Mathematics
and Informatics, New Building of PU "Paisii Hilendarski", office 330 every working day from 8:30
am to 5:00 pm.

Author: Nikolay Georgiev Handzhiyski

Title: An iterative parsing algorithm with application in the profiling of parsers

Table of Contents

1 Overview..6
1.1 Formal means.. .7
1.2 Translators... .8
1.3 Conclusions... .8

2 Parsing machine.. .9
2.1 Basic concept of the machine.. .9
2.2 Characters and lexemes in the machine..9
2.3 Formal definition of a parsing machine..10
2.4 Tokens...10
2.5 Advanced level 1 grammars..11
2.6 Advanced level 2 grammars..11

2.6.1 Well-defined advanced grammars.. .12
2.6.2 Sets of symbols in advanced grammars... .12
2.6.3 Generation of strings.. .12
2.6.4 Sets of tokens... .13
2.6.5 Metagrammar for advanced grammars.. .14

2.7 Phrase state machine...14
2.8 Modules of a parsing machine..15
2.9 Syntax trees...16
2.10 Conclusions... .17

3 Tunnel parsing algorithm.. .18
3.1 Basic concept of the algorithm.. .18
3.2 Stacks..18
3.3 Automata...19

3.3.1 Finding of the shortest paths.. .19
3.3.2 Reachable advanced symbols..19
3.3.3 Conflicts... .20
3.3.4 Trees with empty nodes...21

3.4 Tunnels..21
3.5 Routers..22
3.6 Control objects..23
3.7 Parsing... .26
3.8 Properties of the Tunnel parsing.. .26
3.9 Conclusions... .26

4 Profiling of automatically generated parsers.. .26
4.1 Tokens...27
4.2 Template grammar language...27
4.3 Parser generator profiler.. .27
4.4 Visualizer... .28
4.5 Experiments... .29
4.6 Conclusions... .30

Conclusion... .30
References...32

3

List of the used abbreviations

Abbreviation Full form Page/Source

AABNF Advanced Augmented Backus–Naur Form 14/Dissertation work

ABNF Augmented Backus–Naur Form 7/[5]

TP Tunnel Parsing 18/Dissertation work

Introduction

The mathematical basis of the translators, and therefore of the programming languages, is the
theory of the formal languages and the abstract machines that process them. Since every
programming language is a formal language, it is convenient and common to describe the
programming languages or parts of them (vocabulary, syntax, semantics, etc.) by generative
grammars, and parts of the translation process itself (lexical, syntactic, and semantic analyses) to be
described with different classes of abstract recognizers (finite automata, push-down automata,
Turing machines, etc.).

This dissertation is devoted to two important elements of any translator, namely lexical and
syntactic analyses. Throughout the dissertation, unless otherwise stated, "data" will mean data
processed by a translator.

Checking whether particular data belongs to a given language is a subject of lexical and
syntactic analyses, and it is called recognition. The parsing (syntactic analysis) of the specific data is
their recognition and the derivation of concrete structural information about them.

The development of algorithms related to the recognition and parsing of data is done by many
authors, as the similarities and differences between the algorithms are not always immediately
visible. The known algorithms for data recognition and parsing have various advantages and
disadvantages.

There are computer programs that automatically generate the source code of a parser based on
a given grammar, which code is written in a particular programming language. This code can be
used to parse arbitrary data and output the corresponding structure. The derived data structures can
be used for both further compilation and analysis.

The dissertation work involves the design of a machine for parsing data, called a parsing
machine, in which different parsing algorithms can be used. The advantages of this parsing machine
are that it unites together different parsing approaches/algorithms and adds some capabilities
missing in the concrete parsers known in the literature.

An important part of the dissertation is the design of a new parsing algorithm called Tunnel
Parsing (TP), which is built into the parser module of the parsing machine and takes advantage of
the added capabilities of the parsing machine.

Part of this dissertation is also aimed at the study of a class of ambiguous grammars, a proper
subclass of the ambiguous context-free grammars, generating data, for which the above-mentioned
Tunnel parsing is performed in linear time.

Another essential element of the work is the development of a tool to measure the resources
used during the recognition/parsing of data (generated by different context-free grammars) by
automatically generated parsers with different parser generators and compilers, called parser
generator profiler, profiler for short.

4

Goal and tasks of the dissertation

The main goal of the dissertation research is to investigate, propose, design, develop,
experimentally apply, and approbate means (machines, algorithms, models, languages, and tools)
that are suitable for linear data translation based on some ambiguous context-free grammars.

To achieve the set goal of the dissertation research, the following six main tasks were planned:

Task 1. Research of theories, formal means, approaches, methods, algorithms, models,
architectures, machines, and systems that are related to the translation of data;

Task 2. Designing a common parsing machine architecture that combines different
approaches/algorithms for lexical and syntactic analyses with some new added capabilities;

Task 3. Defining a new kind of context-free grammar, equally powerful as the context-free
grammars, conforming to the proposed common parsing machine architecture;

Task 4. Designing a new parsing algorithm embedded into the parsing machine, which, using
the added capabilities in it, can parse data based on the new kind of grammars when there is no left
recursion in them;

Task 5. Designing and implementing a prototype of a tool for measuring and comparing the
resources used by different parsers, including automatic creation of grammars written in a specially
created metaprogramming language, as well as creating parsers for these grammars with various
parser generators and compilers;

Task 6. Conducting experiments using the created tool.

Structure of the dissertation

The dissertation consists of lists of tables and figures, an introduction, four chapters, a
conclusion, a list of the author's publications on the topic, a list of the noted citations, appendices, a
list of references, and a statement of originality.

The main text of the dissertation consists of 163 pages and is accompanied by 2 (two)
appendices (2 pages).

Chapter 1 Overview contains theories of the formal languages and their processing abstract
machines related to translation. The elements of a translator that perform lexical and syntactic
analyses are discussed, as well as the generative grammars they use. The chapter provides an
overview of finite automata, push-down automata, Turing machines, Markov algorithms, etc. The
overview includes well-known algorithms for recognition and parsing working on the basis of
context-free grammars.

Chapter 2 Parsing machine contains formal definitions of advanced grammars, a phrase
machine that is created on the basis of these grammars, and a detailed description of a parsing
machine. The chapter contains the definitions of languages that are defined by advanced grammars
with advanced symbols. The parsing machine shown contains different types of modules, such as
supplier, scanner, lexer, parser, optimizer, builder, and filter. The different modules and their
functionalities are described in detail. The chapter concludes with the definitions of different types
of syntax trees and the construction commands on the basis of which the trees can be created.

Chapter 3 Tunnel parsing algorithm contains a detailed description of the Tunnel parsing
algorithm. The various objects that are created before the parsing begins, based on a given advanced
grammar, are described in detail. The list of these objects includes: execution stack, depth stack,
repetition stack, archive stacks, automata, reachable trees, conflicts, tunnels, routers, and control
objects. The detailed description of the control objects contains the steps that the parser performs
and is effectively the pseudocode of the Tunnel parsing algorithm. The chapter contains an example

5

of the defined objects that are used by the algorithm and concludes with an example execution of
the algorithm for a selected string of input data.

Chapter 4 Profiling of automatically generated parsers discusses a tool specially created for
the purpose of the dissertation, called a profiler, with the help of which a large number of context-
free grammars and inputs can be generated and experiments can be performed with parsers that are
generated by various parser generators based on these grammars. The chapter contains a description
of a template grammar language specially created for the purpose of the dissertation for imperative
metaprogramming of grammars. The different grammars that define the scripts that are valid
according to the template language are shown. The chapter concludes with the interpretation of the
results of four different experiments that were conducted using the profiler.

In the conclusion, the main results are summarized and systematized, indicating the scientific,
scientific-applied, and applied contributions of the dissertation work. The prospects for the
development of the dissertation topic are formulated.

The list of used literature includes 191 (one hundred and ninety-one) titles, two of which are
in Bulgarian, two are in Russian, and the rest of them are in English.

Approbation

The main results of the research were reported at an international conference and an
international scientific forum – 14th International Conference Education and Research in
Information Society (ERIS), Plovdiv and 8th Summer School, CEFP 2019, Budapest, Hungary.

The results of the dissertation research are presented in 6 (six) publications - 4 (four) in
specialized journals, 1 (one) - in the proceedings of an international conference, and 1 (one) - in the
proceedings of an international forum. The six publications are indexed in world-renowned
databases: 4 (four) in Web of Science and 5 (five) in Scopus. Five of the publications are in editions
with SJR.

Noted is a citation of 1 (one) of the publications on the topic in one scientific study, which is
indexed in the world databases.

Acknowledgments

I express my gratitude to my supervisor, Prof. Dr. Elena Somova, for giving me the
opportunity to conduct the dissertation research in the field and for the large amount of constructive
criticism that led to a higher level of the dissertation. I thank Prof. Dr. Hristo Kiskinov, Prof. Dr.
Emil Hadzhikolev, and Ch. Asst. Prof. Dr. Eng. Georgi Pashev for the valuable recommendations
about the improvement of the dissertation, as well as the entire department of "Computer
Informatics" for the support during the doctoral studies. I also thank my wife, Polina Handzhiyska,
for her support, patience, and help in finding some inconsistencies in the working version of the
dissertation. I thank my mother, Yordanka Katsarova, for the suggested linguistic improvements to
unclear statements in the working version of the dissertation. Last but not least, I thank Dimitar
Nanev for his moral support.

I dedicate this work to my daughter, Maya Handzhiyska.

1 Overview

The theory of translation includes the work with the formal languages and the abstract
machines that process them [1, p. 208t], with which translators work. It is generally accepted that a
translator performs lexical and syntactic analyses.

6

1.1 Formal means

The formal grammars and their corresponding abstract machines make it possible to write
languages in various forms and to check for the membership of arbitrary strings in these languages.
Combining formal means enables working with programs written in programming languages.

Switching Circuits
A way to work with switching circuits composed of relays is considered by Shannon (Claude

Elwood Shannon), who draws a parallel between propositional logic (sentential logic) and the
circuits that implement it.

Neural Networks
The time a network operates is assumed to be discrete (divided into consecutive and equal

time intervals) and starts at one. At each time interval, all neurons either fire or do not fire an
impulse. Depending on how a network can write and read information in the environment, different,
more complex types of machines are possible.

Regular expressions
In [2, p.104c] X+ is used as an abbreviation of XX*.

An efficient way to transform a finite automaton into a regular expression is to use a
generalized nondeterministic finite automaton — an automaton with transitions consisting of
regular expressions [3, p. 70t]. Every nondeterministic automaton is generalized, but not vice versa.

In practice, user-written regular expressions do not always define exactly the strings that the
user expects [4].

Generative grammars, Chomsky's hierarchy
The Augmented Backus-Naur Form (ABNF) is described in [5] and [6]. The more expressive

capability a metalanguage has, the easier it is for the developer to develop the grammar that defines
the object language.

The languages defined by four types of grammars (unrestricted, context-sensitive, context-
free, and regular) form Chomsky's hierarchy.

It is said (already used in some cases above) that all activities (generation of strings in the
language, which is defined by the grammar, data recognition, etc.) are performed based on the
grammar.

Context-free grammars
The renaming rules can be removed from a grammar without changing the language, but this

will change the syntax trees that are generated based on the grammar. In other words, the
transformation is always possible, but not always acceptable.

In a self-embedding grammar for an active and a central nonterminal A, there exists A⇒+xAy
for x,y∈V+ [7, p. 148b].

Finite automata
In [8, p. 210t], it is noted that if the function f outputs more than one result, then the

automaton becomes nondeterministic. All tapes Т(А) recognized by a finite automaton А are
regular language.

The size of a finite automaton can directly affect the time it takes to recognize strings. For this
reason, it is desirable that the finite automata used for string recognition have as few states and
transitions as possible.

7

Push-down automata
The transition function is δ:S×(Σ∪{ε})×Γ→{}S×Γ*, where →{} is defined to mean that the

function can return more than one result as a sequence and that all results are elements of a given
set.

A push-down automaton is deterministic if the automaton always has at most one possible
transition to apply. All other push-down automata are nondeterministic.

If a push-down automaton can recognize each string without using more than a constant
number of symbols in the stack, then this push-down automaton can be transformed into a
(deterministic) finite automaton [9, p. 259b].

Definition of an algorithm
A normal Markov algorithm has a shorter description than the equivalent Turing machine.

One reason is that the result is obtained by always replacing the leftmost of the embedded words
when applying a given formula. Thus, an explicit description of the head motion in the equivalent
Turing machine is not required.

A function that always halts [1, p.208t] for all possible arguments after a finite number of
executed instructions is called an algorithm [2, p.27t].

Closure of the operations and decidability of the problems
According to [10, p. 159b], for arbitrary context-free languages A and B, it is undecidable

whether: L(A)=L(B); L(A)⊂L(B); and L(A)∩L(B)=∅.

1.2 Translators

Translation is a fundamental process when working with programs written in programming
languages. The finite and the push-down automata find application in the translation.

Another possibility is that the language does not have a lexer grammar (but only a parser
grammar) and therefore does not have a lexer. The parsing of this kind of language is called single-
phase parsing in [11, p. 3rb] and scannerless parsing in [12].

The translators are required for the programming languages. Since every programming
language is a formal language, the theory described above applies directly to the creation of
translators.

It is possible for the lexer to be context-aware [13] — the lexer sends multiple token types,
taking into account the current state of the parser.

A popular way for a parser to work with the tokens is to use them for recognition by a push-
down automaton that is generated based on context-free grammar (the type of grammar used in this
section).

The development of grammars and programming languages is directly related to the
compilation process.

1.3 Conclusions

Many recognition and parsing algorithms exist. The parsing algorithms often have problems
with the grammars having rules that generate empty words. The grammars in ABNF contain various
objects that can generate an empty word. Some of these objects are the rules. Based on the research
in this chapter, the following conclusions are drawn:

• The popular parsing algorithms do not support repetitions of grammar elements that can exist
in one ABNF grammar and perform many operations during analysis that can be precomputed
from the grammar;

8

• A key task of the parsing algorithms is to quickly use rules that generate empty words. In [14],
it is shown that this can lead to a lot of work for a graph that does not contain a single
character;

• The lexers in the literature group sequences of characters into a token with a name (a unique
identifier according to the rule used for the grouping). According to the ABNF standard [5],
%x30-32 is a character range that can be represented as the set of characters
{'0','1','2'}. If the parser works with a grammar in ABNF, then the following range
problem exists — how to parse based on the range %x30-32 and which part of the token to
compare to;

• This creates the following case problem — how to distinguish the token names from the rule
names in the parser grammar;

• There is a lack of detailed empirical measurements about the performance of different
automatically generated parsers that provide information on the expected amount of resources
that are necessary to parse data according to specific grammar elements;

• A parsing machine is necessary to combine the parsing with and without lexical analysis in
such a way that the benefits of both ways are combined into one, and the user can choose
whether to have lexical analysis.

2 Parsing machine

This chapter outlines the design of a machine for parsing data, called a parsing machine, in
which various parsing algorithms can be used.

Informally, a parsing machine is an abstract machine built from modules with connections
between them that works by taking unstructured data as an input and sending structured data as an
output. Each parsing machine always scans (reads) the input data and always performs syntactic
analysis.

2.1 Basic concept of the machine

The formalization of the concept of a parsing machine is necessary, so that the interactions
between the modules in the machine and the specific special cases are shown. In order for the
machine to use the tokens, a new kind of grammar is needed to enable the parsing based on all
tokens (except the limit token) in the machine.

The parsing machine is designed to distribute the analysis of the input data between the
different modules for the purpose of parallelism and to allow different analysis strategies to be
applied by the different modules. In the machine, the following modules are distinguished: supplier,
scanner, lexer, parser, optimizer, builder, and filter.

Similar to the working with tokens by the scanner, the lexer, and the parser, down is discussed
the working with commands for building syntax trees by the parser, the optimizer, and the builder.

2.2 Characters and lexemes in the machine

It is reasonable to expect a machine that parses textual data to be able to accept (at least) UTF-
8 [15] encoded input and to handle the encoding errors automatically. A character is defined as a
Unicode position — a nonnegative integer, with a largest possible value that depends on the
Unicode standard used. The set of characters is denoted by U, and it is emphasized that there is a
character with Unicode position zero.

Many authors use Unicode positions in the implementation of translators, but at a theoretical
level, they work with abstract letters. In the theory of the proposed parsing machine, the characters
are specified as Unicode positions and are required for all modules in the machine (some of which

9

are new or with new functionalities), not just for the lexer and the parser. The concretization of the
characters brings the theory closer to practice and enables the formal treatment of some practical
problems.

2.3 Formal definition of a parsing machine

A parsing machine is the n-tuple (M,T,I,S,L,P,O,B,F), where М is a finite nonempty
set of modules, C is a finite nonempty set of connections between the modules, I∈M is a nonempty
set of suppliers, S∈M is a scanner, L∈M is a set of lexers, P∈M is a parser, O∈M is a set of optimizers,
B∈M is a nonempty set of builders, and F∈M is a set of filters. A module is an output module when it
sends data outside the machine.

2.4 Tokens

In order to solve the range and case problems, several types of tokens are distinguished, which
are intended to be used as application data on the transition from the scanner to the lexer, on the
transition from the lexer to the parser, or on the transition from the scanner to the parser (if there is
no lexer).

A module is classified as a transmitter when it outputs tokens to another module that is
classified as a receiver. For a transmitter that uses grammar G=(Φ,Θ,-,-) for nonterminals Φ and
characters Θ⊆U, the following is defined:

• An attribute is written as l=v, where l is a nonempty string of characters (a label) and v is a
value with a domain, which depends on the label;

• A character token is the n-tuple (t-character,n,ɑ), where n∈Θ is a name and ɑ is a
finite set of attributes. If |ɑ|=0, then the token is written as (t-character,n);

• A sequence t oken is the n-tuple (t-sequence,n,e,ɑ), where n∈Φ is a name, e is a string
over Θ (a lexeme), |e|>0, and ɑ is a finite set of attributes. If |ɑ|=0, then the token is
written as (t-sequence,n,e). The unbounded length of е makes these token elements in
an infinite set;

• A limit token is the n-tuple (t-limit,β,е,ɑ), where β⊆Φ are nonterminals, |β|>0, e is
a lexeme, |e|>0, and ɑ is a finite set of attributes. If |ɑ|=0, then the token is written as
(t-limit,β,е);

• An eof token is the n-tuple (t-eof,ɑ), where ɑ is a finite set of attributes. If |ɑ|=0, then
the token is written as (t-eof);

• The infinite set of tokens is denoted by H;

• The type of h∈H is the first element in the n-tuple of h, which is obtained as a result of the
execution of the function Π:H→H' for H'={t-character,t-sequence,t-limit,t-
eof}.

In the above definitions of tokens, only a sequence token (of the t-sequence type) has a
lexeme that can be used for parsing, and the character token (of the t-character type) has a
name instead of a lexeme. This difference from the literature sources enables different ways of
working with these two types of tokens. The limit token (of the t-limit type) provides the
theoretical basis for the machine implementations to correctly handle situations (instead of freezing)
where the working with tokens machine modules do not have enough memory to continue their
work.

10

2.5 Advanced level 1 grammars

In order to solve the case problem and to enable the use of the lexeme in the t-sequence
tokens for analysis, a new type of symbols are added to the grammars, which are called phrase
symbols.

Defined are the set of comparators M={ ,≡}≋ , where ≋ means insensitive comparator, ≡
means sensitive, and the case function Δ:U×U×M→{}U. For example,
Δ('a','a',)={'а','A'}≋ .

2.6 Advanced level 2 grammars

Advanced level 2 grammars are an upgrade of the level 1 grammars. The goal of this upgrade
is to bring the advanced grammars closer to those in ABNF by adding groups, concatenations,
alternations, symbol repetitions, and a symbol defining the empty word.

An advanced level 2 grammar is n-tuple A=(C,N,Σ,Ω,R,S) for a set of categories C, a set
of nonterminals N, a set of characters T⊆U, a set of advanced symbols Ω, a set of rules R, and a set
of start nonterminals S⊆N.

It is defined that:

• Every element ω∈Ω is an indexed n-tuple — an n-tuple that holds the symbol index k∈ℕ0,
which is written as ɑk∈Ω for n-tuple ɑ. The index is not written when it is not used;

• ∄x,y|x=y∧ɑx∈Ω∧βy∈Ω∧ɑ≠β — all symbol indices in Ω are distinct;

• The type of ω∈Ω is the first element in the n-tuple of ω (with an index of zero) and is obtained
as a result of the execution of function Π:Ω→Ω' for Ω'∈{s-reference,s-
character,s-phrase,s-eof,s-concatenation,s-alternation,s-
group,s-repeat,s-epsilon};

• The access function to the elements in the n-tuples is defined as GET:Ω×ℕ0→Ω'∪C∪N∪Ω,
which, upon execution of GET(ω,n) for ω∈Ω and n∈[0..|n|), returns the element at
index n in the n-tuple of ω and Π(ω)=GET(ω,0).

The definitions of advanced level 1 grammars are carried over to level 2, with the n-tuples
becoming indexed:

• A p hrase is a string of characters over Σ;

• A r eference symbol is an indexed n-tuple (s-reference,n)∈Ω for n∈N;

• A character symbol is an indexed n-tuple (s-character,f,t,m)∈Ω for f,t∈Σ, f≤t,
m∈M;

• A phrase symbol is an indexed n-tuple (s-phrase,c,p,m)∈Ω for c∈C, phrase p, and
m∈M;

• An eof symbol is an indexed n-tuple (s-eof)∈Ω.

The following level 2 symbols are added:

• A concatenation is an indexed (n+1)-tuple (s-concatenation,ω0,…,ωn-1)∈Ω for ωi∈Ω,
n>0 and Π(ωi)∉{s-concatenation,s-alterantion};

• An alternation is an indexed (n+1)-tuple (s-alternantion,ω0,…,ωn-1)∈Ω for ωi∈Ω,
n>0 and Π(ωi)=s-concatenation;

• A group symbol is an indexed n-tuple (s-group,ω)∈Ω for ω∈Ω∧Π(ω)=s-
alternantion;

• A repetition symbol is an indexed n-tuple (s-repeat,n,m,ω)∈Ω for n∈ℕ0, m∈(ℕ0∪∞),
n≤m, n≠1∨m≠1, ω∈Ω and Π(ω)∈{s-reference,s-group,s-character,s-
phrase,s-eof}. A repetition with n>1∨(m>1∧m≠∞) is called a countable repetition;

11

• An epsilon symbol is an indexed n-tuple (s-epsilon)∈Ω.

The binary irreflexive relation ↦ is defined, as for x,y∈Ω, it is true that x↦y if and only if
GET(x,n)=y for some n∈[0..|x|). The sign ↦ is read as "has a pointer to". When x has a
pointer to y, it will be said that y is located in x and that x contains or uses y. The transitive closure
[1, p. 26c] of ↦ is defined as ↦*, which is read as "has a transitive pointer to".

The rules in an advanced level 2 grammar can be in a different form. An advanced level 2
context-free grammar is defined as an advanced level 2 grammar having rules in R with the form
A→ɑ for A∈N and Π(ɑ)=s-alternation. From here on, unless otherwise stated, an advanced
grammar means an advanced level 2 context-free grammar.

2.6.1 Well-defined advanced grammars

An advanced grammar A=(-,-,-,Ω,R,-) is well-defined when each symbol in Ω is used
by one and only one object in A and each symbol is used (transitively) in a single rule.

The following is defined:

• ⟦⟧ denotes a set with repeated elements;

• POINTERΩ(ω)= x|(x↦ω|x∈Ω)⟦ ⟧ are all symbols that use ω;

• POINTERR(ω)= r|(r↦ω|r∈R)⟦ ⟧ are all rules in the grammar that use ω;

An advanced grammar A is well-defined if and only if the following conditions hold:

1. |POINTERΩ(ω)|=1 for each ω∈Ω|Π(ω)≠s-alternation;

2. |POINTERΩ(ɑ)|+|POINTERR(ɑ)|=1 for each ɑ∈Ω|Π(ω)=s-alternation;

3. For each ω∈Ω, it is true that r↦*ω for some r∈R.

From here on, all grammars are assumed to be well-defined. When a grammar is well-defined,
it enables one to uniquely determine the number of repetitions of a given symbol by defining and
using the function REPEAT:Ω→ℕ0×(ℕ0∪∞).

2.6.2 Sets of symbols in advanced grammars

From here on, the following denotations are used:

• All reference symbols in Ω are NΩ={ω|ω∈Ω∧Π(ω)=s-reference};

• All phrase symbols in Ω are PΩ={ω|ω∈Ω∧Π(ω)=s-phrase};

• All phrase symbols with an empty phrase are called universal phrase symbols (or s-
universal) and are PAΩ={ω|ω∈PΩ∧|ω.p|=0};

• All nonempty phrase symbols with a sensitive comparator are called sensitive phrase symbols
(or s-sensitive) and are PSΩ={ω|ω∈PΩ∧|ω.p|>0∧|ω.m|=≡};

• All nonempty phrase symbols with an insensitive comparator are called insensitive phrase
symbols (or s-insensitive) and are PIΩ={ω|ω∈PΩ∧|ω.p|>0∧|ω.m|= }≋ ;

• All eof symbols in Ω are FΩ={ω|ω∈Ω∧Π(ω)=s-eof};

• All group symbols in Ω are GΩ={ω|ω∈Ω∧Π(ω)=s-group};

• All repetition symbols in Ω are YΩ={ω|ω∈Ω∧Π(ω)=s-repeat}.

2.6.3 Generation of strings

The Δ is extended to also work with strings, as Δ:U*×M→{}U*. For example,
Δ("ab",)={"ab","aB","Ab","AB"}≋ .

Each advanced symbol ω∈Ω defines a set of strings over N∪H∪Ω. That ω defines a string
β∈(N∪H∪Ω)* is written as ω⇉β. Below are the strings that are defined by the various advanced
symbols:

12

• For advanced grammars at all levels:

• If ω=(s-reference,n)∈Ω, then ω⇉n;

• If ω=(s-character,f,t,m)∈Ω, then ω⇉(t-character,x) for each character
x∈Δ(f,t,m);

• If ω=(s-phrase,c,-,-)∈PAΩ, then ω⇉(t-sequence,c,β) for each string β∈T+;

• If ω=(s-phrase,c,p,m)∈(PSΩ∪PIΩ), then ω⇉(t-sequence,c,β) for each string
β∈Δ(p,m);

• If ω=(s-eof)∈Ω, then ω⇉(t-eof).

• For advanced level 2 grammars:

• If ω=(s-concatenation,ω0,…,ωn-1)∈Ω, then ω⇉ω0…ωn-1;

• If ω=(s-alternation,ω0,…,ωn-1)∈Ω, then ω⇉ωi for each i∈[0..n);

• If ω=(s-group,ɑ)∈Ω, then ω⇉ɑ;

• If ω=(s-repeat,n,m,x)∈Ω, then ω⇉β for each string β over {x}, where n≤|β|≤m;

• If ω=(s-epsilon)∈Ω, then ω⇉ε.

An advanced symbol ω∈Ω, which defines a string γ, can be decomposed to the string ɑωβ, as
the result of the decomposition of the symbol is ɑγβ, where ɑ,β∈(N∪Ω∪H)*. The sequence
(μ0,...,μn) for n≥0 is a φ decomposition of ψ, if φ,ψ∈(N∪H∪Ω)*, φ=μ0, μn=ψ and μi+1 is the
result of the decomposition of some advanced symbol in μi for i∈[0..n). The decomposition is
terminal when μn∈(N∪H)*. It is said that from φ can be derived ψ, when there exists a φ
decomposition of ψ.

The normal application of rule D→γ∈R to a string ɑDβ completes with result ɑγβ, where
ɑ,β∈(N∪Ω∪H)*. From here on, all rule applications are normal. The sequence (μ0,...,μn) for
n≥0 is a normal φ derivation of ψ, if φ,ψ∈(N∪H∪Ω)*, φ=μ0, μn=ψ and μi+1 for i∈[1..n) is the
result of: a) the normal application of some rule in R to μi; or b) the decomposition of advanced
symbol ω∈Ω in μi. From here on, all derivations are normal. The number of steps in a normal φ
derivation of ψ is n. The normal derivation is terminal when μn∈H*. It is said that from φ can be
derived ψ, when there exists a normal φ derivation of ψ. With φ⇒ψ, a one-step derivation is written,
with φ⇒*ψ — a derivation with zero or more steps, and with φ⇒+ψ — a derivation with one or more
steps.

The infinite set of character and sequence tokens is HCS={h|h∈H∧Π(h)∈{t-
character,t-sequence}}. The language generated by a given start rule J∈S in grammar A is
LA(J)=JCS∪JE, where JCS={w(t-eof)|J⇒+w∧w∈HCS*} and JE={w|J⇒+w∧w∈HCS*(t-eof)}.
When the grammar is implied, instead of LA(J), just L(J) will be written.

2.6.4 Sets of tokens

The advanced symbols that directly define a token are in the set HΩ={ω|ω∈Ω∧Π(ω)∈{s-
character,s-phrase,s-eof}}. The function Ψ:HΩ→{}H is defined such that executing
Ψ(ω) with ω∈HΩ returns as a result the set of tokens defined by ω, according to the definitions
above. It is said that two advanced symbols x,y∈Ω overlap when Ψ(x)∩Ψ(y)≠∅ (i.e., when the
sets the symbols define have at least one element in common).

13

2.6.5 Metagrammar for advanced grammars

In order to define advanced grammars, several rules are added to the ABNF standard because:
a) the standard does not allow Unicode characters; and b) the standard cannot express phrase
symbols, nor can it express with a single element the symbol (s-character,x,x,)≋ , when |
Δ(x,x,)|>1≋ . The result obtained from the ABNF standard with the above additions is called
Advanced ABNF (AABNF).

2.7 Phrase state machine

During parsing based on an advanced grammar, it is possible for the parser to check whether a
given token h∈H simultaneously belongs to a large number of sets, each of which results from
Ψ(ω) for ω∈Z and Z⊆HΩ.

From the sets that are defined by phrase symbols, it follows directly that all phrase symbols
P⊆Z can be divided into sets that have no elements in common Pc according to their category —
Pc={ω|ω∈P∧ω.c=c}.

To make token-to-phrase comparisons fast, a phrase machine is created that classifies the
different lexemes in the tokens and the phrases in the grammar's phrase symbols, so that instead of
comparisons between strings, comparisons are made between classes of strings.

Each unique phrase in a sensitive phrase symbol is assigned a unique sensitive index. Each
phrase in an insensitive phrase symbol is assigned an insensitive index.

After all the phrases in the phrase symbols are classified, in order to check the membership of
a given sequence token in the sets of tokens defined by the different phrase symbols in a given set
Pc, a series of actions must be performed.

A phrase state machine (phrase machine for short) is the n-tuple (Σ,Q,δ,F,q0) for alphabet
Σ⊆U, a nonempty set of states Q, a transition function δ:Q×Σ→Q×M, a set of final states F, and a
start state q0∈Q.

The transition function δ is represented as a set of transitions in the form ɑ→β for n-tuple of
arguments ɑ=(s,σ), n-tuple of results β=(d,m), input s∈Q, transition character σ∈Σ, output
d∈Q, and comparator m∈M. Each final state is in the form q→(n,m) for q∈Q, n∈ℕ1, and m∈M. No
two final states have the same q — ∄x,y|x,y∈F∧x≠y∧x.q=y.q. For x∈δ, it is said that x is a
sensitive transition when x.m=≡ and an insensitive transition when x.m=≋.

In order for the machine to work in the required way, it must be well defined, which requires
additional constraints on the formal definition. The first way to analyze a string w on a well-defined
phrase machine is called sensitive analysis. In this type of analysis, the phrase machine works like a
finite automaton. The second way to analyze a string w by a well-defined phrase machine is called
insensitive analysis.

14

The formal description of the insensitive analysis is shown in pseudocode in Figure 1.

An advanced grammar can be compiled to a phrase machine using the phrase symbols in the
grammar.

The result of classifying each string is the n-tuple(n,m) for n∈ℕ0 and m∈M.

2.8 Modules of a parsing machine

After defining the different objects that are used in the machine, this section will introduce the
modules that work with these objects.

The first module in a machine is called a supplier. This module outputs sequences of bits to
the next module. There is at least one supplier in a machine.

A scanner is called the module that accepts a sequence of bits from the supplier and decodes
them into characters that it outputs to the next module in the machine. The decoding can be
according to different types of standards, but the decoding is assumed to be according to the
Unicode standard used by the machine.

For each decoded character φ from the input data, the scanner outputs a token (t-
character,φ,ɑ). This module serves as a "border" in the machine that separates the bit
operations and the token operations.

A lexer is the module that accepts tokens from the previous module and outputs the same or
different tokens to the next module, and the tokens that are output depend on the specific lexer.
There can be zero (meaning a lexerless machine) or more lexers, all ordered one after the other and
all after the scanner.

15

Function INSENSITIVE:Σ*→ℕ0×M with a parameter w
 1. begin
 2. c←q0, i←0 ▷ preparation
 3. while i<|w| do ▷ steps
 4. l←LOWER(wi), u←UPPER(wi) ▷ variants of wi

 5. if l=u then ▷ test for one variant
 6. t|t∈δ∧t.s=c∧t.σ=l ▷ search
 7. if ∄t then return (0,≡) ▷ failure if ∄t
 8. c←t.d ▷ next state
 9. else
10. L|L∈δ∧L.s=c∧L.σ=l ▷ search
11. if ∄L then return (0,≡) ▷ failure if ∄L
12. U|U∈δ∧U.s=c∧U.σ=u ▷ search
13. if ∄U then return (0,≡) ▷ failure if ∄U
14. if L.m= ∧U.m= then c←L.d ≋ ≋
15. else if L.m= then c←L.d≋ ▷ next state
16. else if U.m= then c←U.d≋ ▷ next state
17. else c←L.d ▷ preference of L
18. i←i+1 ▷ next character
19. f|f∈F∧f.q=c ▷ search
20. if ∃f return (f.n,f.m) ▷ success if ∃f
21. return (0,=) ▷ failure
22. end

Figure 1: Pseudocode for insensitive analysis by a phrase machine

No strict restriction is placed on the type of grammar in the lexer specification, but for
convenience, a normal grammar G=(N,-,-,-) will be used. The rule in the lexer grammar, based
on which the lexer accepts the longest possible sequence of tokens, is denoted by q. The traditional
way the lexer works changes (if there is no rule in the grammar that accepts the current data, it is an
error) by defining a new one. At any moment of the lexer's work:

• If rule q is uniquely established (after at least one accepted token), then:

1. The lexer outputs t-sequence(n,e,ɑ) token, where n∈N is the name of q and e is a
string of the names of the accepted t-character tokens based on rule q. If the machine
works with certain attributes, then the lexer adds them to ɑ;

2. The lexer removes the used t-character tokens;

3. The analysis starts over with the remaining tokens that have been accepted by the scanner.

• If the lexer finds that rule q will not be established, then:

1. The lexer outputs to the parser the first of the tokens it received from the scanner;

2. The analysis starts over with the remaining tokens.

• At the moment the lexer reaches its limit (if any) before rule q is uniquely established, then:

1. The lexer outputs a t-limit(Q) token to the parser, where Q is the set of rule names that
the lexer did not establish that they do not accept the string of tokens accepted from the
scanner;

2. The analysis stops.

• If the lexer needs to analyze only one remaining token of type t-eof, then:

1. The lexer sends an eof token to the next module;

2. The analysis stops.

A lexer that works in the described way is called a continuous lexer.

A parser is called the module that accepts input tokens, analyzes them based on a given
specification, and outputs syntax structure construction commands (short for just commands).

An optimizer is called the module that accepts commands and outputs the same or other
commands to the next module, where the commands output depend on the specific optimizer.

A builder is called the module that accepts commands from the previous module and performs
activities that are related to the syntax structure of the tree. The builder module is a "border"
between working with commands and working with syntax structures.

A filter is called the module that accepts syntax structures and outputs the same or other
syntax structures, and the structures that are output depend on the particular filter.

2.9 Syntax trees

A popular understanding is that the abstract syntax trees may not contain all possible nodes
labeled with nonterminals and may not contain certain nodes when they are implied by the context.
These informal definitions, while expressing the difference between trees, leave much unclarity as
to how much information is "enough" to distinguish different parts of a tree and by what criteria a
particular tree becomes abstract.

To derive a syntax tree, the builder uses facts. The set of all facts is defined by Φ. Depending
on the relationships between the objects in the parser grammar, groups of facts derived from the
advanced grammar A=(-,-,-,-,R,-) are distinguished, which is used for parsing by the parser
in the machine:

• Which alternation is in which rule or group;

• Which concatenation is in which alternation;

16

• Which token is analyzed by the parser as part of the set that is defined by a particular symbol,
before the token is output to the builder;

• Which nonterminal is referenced by which reference symbol.

Depending on the repetition of a given symbol in A, several types of facts are distinguished.
These facts are mutually exclusive for each individual symbol and are as follows:

• skippable — exists for the symbol ωk∈Ω that can be recognized in the input data zero or one
number of times. Formally, there is one fact (f-skippable,k) for each of the symbols
ωk|ωk∈Ω∧REPEAT(ωk)=(0,1);

• single — exists for the symbol ωk∈Ω, which must be in the input data exactly once. Formally,
there is one fact (f-single,k)∈Φ for each of the symbols ωk|
ωk∈Ω∧REPEAT(ωk)=(1,1);

• array — exists for the symbol ωk∈Ω, which must be in the input data, when the minimum and
maximum number of repetitions of the symbol are equal, are greater than one, and are a finite
number. Formally, there is one fact (f-array,k,n)∈Φ for each of the symbols ωk|
ωk∈Ω∧REPEAT(ωk)=(n,n)∧n>1∧n≠∞;

• list — exists for the symbol ωk∈Ω, which must be in the input, when the minimum number of
occurrences of the symbol is less than the maximum number and the maximum number is
greater than one. Formally, there is one fact (f-list,k,n,m)∈Φ for each of the symbols
ωk|ωk∈Ω∧REPEAT(ωk)=(n,m)∧n<m∧m>1;

The facts that the builder possesses are defined by K⊆Φ. It is assumed that the parser has all
the knowledge Φ and that the builder uses all the knowledge it possesses.

The syntax trees are classified according to the structure of the advanced grammars in
AABNF. One of the most important properties of the advanced grammars is that they have a
minimum and maximum number of repetitions for the individual elements.

According to the information contained in the tree, the syntax trees are as follows:

• Concrete — a syntax tree that is built based on all available facts, when К=F;

• Abstract — a tree that is built without using at least one required fact, when К⊂F. This means
that the maximum number of abstract trees is 2|F|-1 (to be sure that the tree is not concrete,
one is subtracted from the number of facts).

Commands for preparation (type d-prepare), unpreparation (type d-unprepare), enter
for a rule (type d-rule-enter), success for a rule (type d-rule-success), back for a rule
(type d-rule-back), failure for a rule (type d-rule-fail), enter/success/back/failure for a
group (type d-group-enter/success/back/fail), enter/success/back/failure for a
concatenation (type d-con-enter/success/back/fail), token forward (type d-token-
front), token backward (type d-token-back), next element (type d-next), previous element
(type d-previous), creation/destruction for a list (type d-list-create/destroy),
creation/destruction for an array (type d-array-create/destroy), found error (type d-
error), success of the analysis (type d-success), and end of the analysis (type d-done) are
distinguished.

2.10 Conclusions

In the second chapter, a conceptual model of a parsing machine is presented, which is suitable
for the implementation of various strategies, methods, approaches, and algorithms that are popular
in the literature. Also defined is a new type of lexer module functionality that enables the parser
module to parse according to the case of the characters in the lexemes and to accept characters
according to character ranges.

17

An addition to the ABNF is proposed, with which the advanced grammars can be defined. A
phrase machine model is proposed that categorizes in advance the different phrases in the parser
grammar in order to speed up the analysis. A modification of the known in the literature way of
operation of the scanner and lexer modules is proposed. New modules, such as a supplier and an
optimizer, are defined.

The common architecture of a parsing machine is oriented more towards the types of data that
are received and sent by the modules in the machine and less towards how they are processed.

3 Tunnel parsing algorithm

In this chapter, the Tunnel Parsing (TP) algorithm is proposed and discussed as an algorithm
that is executed by the parser module in the parsing machine, introduced in the previous chapter.

3.1 Basic concept of the algorithm

The goal of the algorithm is to efficiently execute a push-down automaton having transitions
with advanced symbols and countable repetitions, which is represented as connected transition
diagrams. For efficient execution, the algorithm groups certain transitions and states of the push-
down automaton into “parts”.

The situation is complicated by the fact that in the ABNF grammars there may be a repetition
of a reference (for example, 5*8R), with the referenced rule generating an empty word (for
example, R=0*1"x"). In this situation, the TP parses as many repetitions as possible using tokens
(for example, "xx"), and the remaining number of repetitions (3) up to the minimum required (5)
are performed without tokens. The algorithm does not enter an infinite loop when the repetition is to
infinity (for example, 5*R).

3.2 Stacks

The TP algorithm uses an execution stack that consists of elements represented as an n-tuple
(c,n) for control state c and the number of archived depth stack elements n∈ℕ0.

At runtime, the TP algorithm uses a depth stack that consists of segments. One segment
contains information about the operations that the parser can perform depending on the current input
token. Each segment is represented as an n-tuple (p,n,m,rm,rd,rn) for parent p∈(NΩ∪GΩ∪N),
minimum number of repetitions n, maximum number of repetitions m, minimum router rm of the
r-minimum type, inner router rd of the r-inner type, and next router rn of the r-next type.
If p∈(NΩ∪GΩ), then (n,m)=REPEAT(p), and if p∈N, then n=1 and m=1.

For the different analyses that follow below, a repetition stack with N0 elements called
counters is used. This stack contains the number of repetitions that have already been found (or are
in the process of being found) for a given advanced symbol. Repetitions are counted for the symbol
ω∈Ω when for (n,m)=REPEAT(ω) is true that n>1∨(m>1∧m≠∞) (the repetition is countable).

At runtime, the TP algorithm can progress backward in the automata. To make this possible,
the items in the depth stack are not deleted but are moved to the archive depth stack in an operation
called archiving. Similarly, moving an element from the archive depth stack to the depth stack is
called restoring.

The archive repetition stack works in a similar way — when the algorithm moves from
recognizing a given advanced symbol to the next, the number of repetitions that have been
recognized so far for the given element (if any) is archived in the archive repetition stack.

18

3.3 Automata

For the purpose of analyzing a string of tokens based on an advanced grammar, a sequence of
automata is created. Each automaton is created recursively by applying various templates from
which states and labeled transitions are created.

For each symbol (s-concatenation,ω0,…,ωn-1), states and transitions are created by
applying the template in Figure 2. States A and D are not created, but they are the context in which
the template is applied. In Figure 2, k is the sequence number of the concatenation in the alternation
that uses the concatenation. The pairs of states Xk*2-1 and Xk*2, as well as the transitions between
them, for k∈[1..n-1], are created only if n>1. Each pair Xi*2 and Xi*2+1, for i∈[0..n-1], is
the context in which the template for ωi is applied.

The parent of the state, which is created when applying a given template for the symbol ω|
(HΩ∪NΩ∪GΩ∪YΩ) is p|p∈(R∪GΩ)∧p↦ɑ↦β∧(β↦ω∨β↦γ↦ω) for Π(ɑ)=s-alternation,
Π(β)=s-concatenation and Π(γ)=s-repeat.

From here on, only reduced and well-defined advanced grammars that do not have left
recursion are worked with. This removes certain kinds of ε-cycles (but many other kinds remain)
that can exist in the automata built based on the grammar.

3.3.1 Finding of the shortest paths

It is chosen that if there are two ε-paths with the same number of ε-transitions that pass
through the states created for two different concatenations in the same alternation, then the shortest
path is the one that passes through the states for the concatenation with a lower sequence number in
the alternation.

During the parser's generation, the shortest ε-path, if any, from the start state to the final state
created for each individual rule is first found. The shortest ε-path, if any, from the start state to the
final state created for each individual group is then found.

Based on the found ε-paths for rules and groups, the shortest ε-paths for jumping each
individual symbol ω located in a given concatenation are found. This is done by searching for the
shortest ε-path between states Xi*2 and Xi*2+1, which are created when applying the template in
Figure 2 for symbol ωi in concatenation k=(s-concatenation,ω0,…,ωn-1), where
i∈[0..n). Based on all ε-paths found so far, found are the ε-paths for each symbol ωi from the
state after ωi to the final state for the rule (or the group) that uses the alternation that uses k.

3.3.2 Reachable advanced symbols

Any symbol ω∈HΩ that is the label of a given transition t, is called reachable from state q,
when there exists at least one sequence of zero or more ε-transitions from q to the beginning of t. A
key state is any state that is a start state (of a rule or group) and any state after a given symbol that is
created by applying the pattern in Figure 2.

During the parser's generation, a search is performed for the reachable states from each key
state. The search is similar to the popular depth-first search, but with a few differences:

1. The only way a search can jump a symbol (to go through the states and transitions that are
created for the symbol) is by traversing the symbol's ε-path, if it exists;

19

Figure 2: A template with states and transitions created on the basis of a concatenation

2. The transitions (d-con-enter,k) with lower k, which are not part of the chosen ε-path
(if any) for the parent of q, are used for the search first;

3. When searching from a given state q, the transition at the chosen ε-path (if any) for the parent
of q is used for the search last.

The result of the search for the reachable symbols from state q is the reachable tree of q, in
which the descendants of each node are ordered in the order they were found. The label of a given
leaf in the reachable tree is equal to the label of the transition that was used to find the leaf — the
symbol ω∈HΩ.

From the construction of advanced grammar automata and the definitions of reachable
advanced symbols, it follows recursively that each reachable advanced symbol from a given initial
state does not conflict with itself in the following situation:

1. The state is created for a group (or for a rule that is referenced by a reference);

2. The group (or the reference) repeats at least two times;

3. For the group (or the rule), there is a chosen ε-path.

3.3.3 Conflicts

In the advanced grammars, there are character, phrase, and eof symbols, as well as countable
repetitions for them. As a consequence, different new types of conflicts between symbols become
possible during parsing based on these grammars, which do not occur during the work of other
parsing algorithms using other grammars.

If in the reachable tree of state q for ωa∈HΩ in leaf's label la and symbol ωb∈HΩ in leaf's label
lb|la≠lb is true that Ψ(ωa)∩Ψ(ωb)≠∅, then it is said that ωa and ωb are in conflict from q.

The set E of leaves in the reachable tree of q is here considered. During the generation of the
parser, all the different conflicts Ei are derived from this set E. Each conflict Ei contains an ordered
set of leaves in E, in the order they are found, with advanced symbols as labels, as well as
information (shown below) about the particular conflict.

Several conflict types are distinguished and are represented as n-tuples, where the first
element is the conflict's type, l∈L for L={l-character,l-sensitive,l-
insensitive,l-universal,l-eof}, and the last element, s, is an ordered set of the leaves
in E labeled with the advanced symbols that are in conflict:

• (l-character,f,t,s) — a character conflict for f,t∈U and f≤t, which contains the
ordered set s from leaves in E with labels from(s-character,x,y,m), such that f≤r≤t
for at least one r|r∈Δ(x,y,m);

• (l-sensitive,c,n,s) — a sensitive conflict for a category c∈C, a phrase index
n=SENSITIVE(p) with a phrase p, and an ordered set s from leaves in E with labels from:

• At least one symbol (s-phrase,c,pn,≡)∈PSΩ;

• Zero or more symbols (s-phrase,c,q,)∈PI≋ Ω, such that n=SENSITIVE(j) for at
least one j∈Δ(q,)≋ ;

• Zero or more symbols (s-phrase,c,-,-)∈PАΩ;

• (l-insensitive,c,n,s) — a insensitive conflict for category c∈C, a phrase index
n=INSENSITIVE(p) for a lowercase phrase p, and an ordered set s from leaves in E with
labels from:

• At least one symbol (s-phrase,c,qn,)∈PI≋ Ω;

• Zero or more symbols (s-phrase,c,-,-)∈PАΩ;

20

• (l-universal,c,s) — a universal conflict for a category c∈C and an ordered set s from
leaves in E with labels from at least one symbol(s-phrase,c,-,-)∈PАΩ;

• (l-eof,s) — eof conflict for an ordered set s from leaves in E with labels from at least
one symbol (s-eof)∈FΩ.

That a given token h∈H belongs to a given conflict Ei is denoted as h∈Ei. The cases of a
token belonging in conflict are as follows:

• (t-character,u)∈Ei, if and only if Ei=(l-character,f,t,-) and f≤u≤t;

• (t-sequence,c,e)∈Ei, if and only if:

• Ei=(l-sensitive,c,n,-) with n=SENSITIVE(e); or

• Ei=(l-insensitive,c,n,-) with n=INSENSITIVE(e); or

• Ei=(l-universal,c,-);

• (t-eof)∈Ei, if and only if Ei=(l-eof,-).

3.3.4 Trees with empty nodes

An original syntax tree is ε-condensed when every ε-node in the syntax tree is optimal
according to the following optimality criteria:

1. Each ε-node in the tree has as few subnodes as possible, according to the grammar from
which it is built;

2. If more than one concatenation in a given alternation can be the basis for the creation of the
same number of ε-nodes, then the nodes based on the concatenation with the lower sequence
number in the alternation are created;

3. The non-ε-nodes are ordered before the ε-nodes when all these nodes are created based on the
same symbol (as a consequence, a possible combinatorial explosion is prevented).

If two different syntax trees built based on the same grammar and for the same input tokens
become exactly the same when transformed into ε-condensed form, then they are ε-equivalent. The
transformation replaces all ε-nodes with their optimal variant.

3.4 Tunnels

The information contained in each tunnel is about changing the various stacks that the
algorithm uses and about the commands that can be sent to the next module. A tunnel is represented
as an n-tuple (t,e,o,d,a) for the tunnel's type t∈{τ-first,τ-inner,τ-last,τ-ε-
inner,τ-ε-last,τ-ε-direct-front,τ-ε-direct-back,τ-ε-main-front,τ-ε-
main-back}, a sequence of commands e, a sequence of operations o over O, a number of
elements to remove d∈ℕ0, which must be removed from the repetition stack, and a number of
elements to add a∈ℕ0 (each with a value of one), which must be added to the repetition stack (after
d number of elements are removed).

During the parser's generation, different types of tunnels are extracted based on the ordered
set s in a given conflict Ei, which is an element in a nonempty set of conflicts E, which are derived
from the leaves of the reachable tree Z for key state q with traversal of Z. For extraction purposes,
an extraction stack of segments is created and:

• If q is a state for rule B→ɑ, then the segment of B is added to the extraction stack; or

21

Figure 3: Possible conflicts between advanced symbols

• If q is a state for a group, then the group's segment is added to the extraction stack.

During the extraction of the tunnels, the newly added segments to the extraction stack are only
for references or groups. The tunnels for conflict Ei are extracted as follows:

• A tunnel of the τ-first type is extracted from q to the first element in s;

• A tunnel of the τ-inner type is extracted between any two adjacent elements in s (from one
element to the next in the ordered set);

• If no ε-path is chosen from q to the final state for the parent of q, then a tunnel of the τ-
last type is extracted from the last element in s to q;

• If there is a chosen ε-path from q to the final state for the parent of q, then a tunnel of the τ-
ε-inner type is extracted from the last element in s to the end of the ε-path. For each tunnel
of the τ-ε-inner type, a tunnel of the τ-ε-last type is extracted from the final state for
the parent of q to q.

If, for a key and nonstart state q, there is a chosen ε-path to the final state for the parent of q
and the conflict set for q is empty, then a tunnel of the τ-ε-direct-front type from q to this
final state is extracted. In the opposite direction, a tunnel of the τ-ε-direct-back type is
extracted.

For each rule (or a group) for which an ε-path is chosen, a tunnel of the τ-ε-main-front
type is extracted from the start to the final state. In the opposite direction, a τ-ε-main-back
tunnel is extracted.

3.5 Routers

For each key state q, an object called a router is created. Routers are intended to contain
precomputed information about how, during parsing, the parser can continue the analysis from a
given automaton state. A router is represented as an n-tuple (t,p,cε) for a router's type t∈{r-
origin,r-minimum,r-inner,r-next}, an ordered set of paths p, and continuation control
state cε. A path in a router is defined as Ei→c for a conflict Ei derived for q and a control state (c-
state for short) c.

The different types of routers are created in the following situations:

• r-origin — for each start rule in S;

• r-minimum — for each symbol ω|ω∈(NΩ∪GΩ)∧REPEAT(ω)=(n,m)∧n>1 (for each
reference or group that repeats at least twice);

• r-inner — for each symbol ω|ω∈(NΩ∪GΩ)∧REPEAT(ω)=(n,m)∧n<m∧m>1 (for each
reference or group for which the minimum number of repetitions is less than the maximum
number of repetitions and the maximum number of repetitions is more than one);

• r-next — for each symbol ω|ω∈(NΩ∪GΩ∪HΩ) (for all references, groups, and all advanced
symbols that directly define tokens).

The paths in the different types of routers are created as follows:

• In r-origin, r-minimum, and r-inner, one path is created per each first leaf in the
ordered set of leaves s in each conflict Ei that can be derived from the leaves E of the rule's
reachable tree for the rule's (or group's) start state for which the router was created;

• In r-next, one path is created for each first leaf in the ordered set of leaves s in each
conflict Ei, which can be derived from the leaves E of the reachable tree for the state after the
symbol for which the router was created.

22

3.6 Control objects

The TP algorithm uses a set of control objects (c-objects, for short) that use different tunnels
and routers. Each control object consists of at least one control state.

The number of control states in a control object depends on the control object. Each control
object indicates "where" in the automata the parser reached, and each control state defines "which"
operations are to be performed. Each tunnel is executed in a specific context that represents all
stacks at a given time.

All the operations that are defined by the different c-states are such that the parser follows
exactly the automata that were created for the advanced grammar, always moving along the shortest
path from one state to another.

Origin control object
One origin c-object is created for each start rule J∈S. Before the parser starts analyzing the

input tokens, depending on the selected start rule J, the parser adds the created origin c-object
(created for J) as the first element in the execution stack. An origin c-object is an n-tuple (c-
origin,{use},r) for one c-state use and a router r of the r-origin type.

Terminal control object
One terminal c-object is created for each terminal state in the automata. The purpose of this c-

object is to increase the execution stack by one element before the parser starts working with the
next token. A terminal c-object is an n-tuple (c-terminal,{use},r) for one c-state use and a
router r of the r-next type.

Token control object
One token c-object is created for each leaf in the ordered set of leaves s in each conflict Ei

that can be derived from the leaves E of a given reachable tree when the symbol in the leaf's label
has a maximum number of repetitions equal to one. A token c-object is an n-tuple (c-token,
{use,used},n,t,τ) for two c-states (use and used), a next c-object n, a c-object t of the c-
terminal type, and a tunnel τ of the τ-first or the τ-inner type.

Batch control object
The batch c-objects are created similarly to the token c-objects, but when the leaf's label has a

maximum number of repetitions greater than one. This c-object has complex functionality because it
iterates ω both forward and backward without the help of other c-objects. The way the c-states in
this object work is that they accept as many h∈Ψ(ω) as possible. A batch c-object is an n-tuple (с-
batch,{use,repeat,back,used},n,t,τ) for the four types of c-states, a next c-object n,
a c-object t of the c-terminal type, and a tunnel τ of the τ-first or the τ-inner type.

Epsilon-origin control object
The epsilon-origin c-objects are created for each cε in a router of r-origin type, that is

created for a given start rule J∈S, for which there is a chosen ε-path, because J⇒*ε. The purpose of
this c-object is to be used when the parser starts the parsing for the start state of J, but there is no
path in the said router for the first input token. An epsilon-origin c-object is an n-tuple (c-
epsilon-origin,{use,used},τf,τb) for the two types of c-states, a forward tunnel τf of
the τ-ε-main-front type, and a backward tunnel τb of the τ-ε-main-back type.

Epsilon-next control object
The epsilon-next c-objects are created for each key state q (other than the start of a rule or

group), from which there is a chosen ε-path to the final state for q's parent. The only c-state of this
type of c-object is used as cε in a router r of the r-next type, which was created for q. Once the

23

parser is in state q, then the parser will search for a path in r for the current token. If no path is
found, then the single c-state of that object replaces the top of the execution stack. An epsilon-next
c-object is an n-tuple (c-epsilon-next,{use},τf,τb) for one c-state, a forward tunnel τf
of the τ-ε-inner type, and a backward tunnel τb of the τ-ε-last type.

Epsilon-fill control object
One epsilon-fill c-object is created for each router of the r-minimum type when the rule or

the group for which this router is created has an ε-path. The single c-state is used as cε in the said
router and is never added to the execution stack because it is used by other c-objects. An epsilon-fill
c-object is an n-tuple (c-epsilon-fill,{use},τf,τb) for one c-state, a forward tunnel τf
of the τ-ε-main-front type and a backward tunnel τb of the τ-ε-main-back type.

Passage-origin control object
A passage-origin c-object is created at the end of a list of c-token or c-batch c-objects in

a router of the r-origin type that is created for a given start rule J∈S for which there is a chosen
ε-path, because J⇒*ε. In order to get to the use of this c-object, the parser has run through all
possible ways of parsing the input tokens and progressed backward until it reached the start state for
the start rule that has a chosen ε-path. A passage-origin c-object is an n-tuple (c-passage-
origin,{use,used},τf,τb) for two c-states, a forward tunnel τf of the τ-ε-inner type,
and a backward tunnel τb of the τ-ε-last type.

Passage-minimum control object
A passage-minimum c-object is created at the end of a list of c-token or c-batch c-

objects in a router r (of the r-minimum type) that is created for a given start rule J∈S for which
there is a chosen ε-path, because J⇒*ε. In order to get to the use of this c-object, the parser used all
c-token and c-batch c-objects that are arranged in a list of c-objects in the minimum router r.
A passage-minimum c-object is an n-tuple (c-passage-minimum,{use},τ) for one c-state
and a tunnel τ of the τ-ε-inner type.

Passage-next control object
A passage-next c-object is created at the end of the list of c-token or c-batch c-objects in a

router of the r-next type that is created for a given state q, from which there is a chosen ε-path to
the final state for the parent of q. In order to get to the use of this c-object, the parser has performed
all possible ways to parse the input tokens after the given state and progressed backward. A passage-
next c-object is an n-tuple (c-passage-next,{use},τ) for one c-state and a tunnel τ of the
τ-ε-inner type.

Back-origin control object
A back-origin c-object is created at the end of the list of c-token and c-batch control

objects in a router of type r-origin that is created for a given start rule for which no ε-path is
chosen. This c-object is similar to the passage-origin c-object with the difference that there is no ε-
path selected for the start rule, and for this reason, the parser goes from the state for the last c-
token or c-batch c-object directly to the start state of the start rule. A back-origin c-object is an
n-tuple (c-back-origin,{use},τ) for one c-state and a tunnel τ of the τ-last type.

Back-universal control object
A back-universal c-object is created at the end of the list of c-token or c-batch c-objects

in a router of the r-next type, which is created for state q after symbol ω∈(NΩ∪GΩ∪HΩ), where
from q there is no chosen ε-path to the final state for the parent of q and for ω∈(NΩ∪GΩ) no
repetitions are counted or ω∈HΩ. When the parser progresses backward and returns to state q, then
this c-object executes the tunnel from the final state for the parent of q to q. A back-universal c-

24

object is an n-tuple (c-back-universal,{use},τ) for one c-state and a tunnel τ of the τ-
last type.

Back-countable control object
A back-countable c-object is created at the end of the list of c-token or c-batch c-objects

in router r of the r-next type, which is created for state q, after symbol ω∈(NΩ∪GΩ) with
segment g from which there is no ε-path to the final state for the parent of q and repetitions are
counted for ω. The functionality of this c-object is similar to that of a back-universal c-object, with
the difference that the parser restores one element to the repetition stack and does backward ε-fill if
necessary. A back-countable c-object is an n-tuple (c-back-countable,{use},g,τ) for one
c-state, the said segment g, and a tunnel τ of the τ-last type.

Back-minimum control object
A back-minimum c-object is created at the end of the list of c-token or c-batch c-objects

in an r-minimum router that is created for a given rule (or a group) for which no ε-path is chosen.
In order to get to the use of this c-object, the parser has performed all possible ways to analyze the
input tokens with repetitions (to analyze the minimum number of repetitions) of the given rule or
group and is now progressing backward. A back-minimum c-object is an n-tuple (c-back-
minimum,{use},τ) for one c-state and a tunnel τ of the τ-last type.

Back-inner control object
A back-inner c-object is created at the end of the list of c-token or c-batch c-objects in a

router of the r-inner type that is created for a given reference (or a group) for which no ε-path is
chosen. In order to get to the use of this c-object, the parser has performed all possible ways of
analyzing the input tokens by a repetition (analyzing more than the minimum number of repetitions)
of the given rule (or a group) and is now progressing backward. A back-inner c-object is an n-tuple
(c-back-inner,{use},τ) for one c-state and a tunnel τ of the τ-last type.

Unwind control object
Only one global unwind c-object is created in the control layer. During the execution of the

operations that are defined by this c-object, the parser archives the depth stack (similar to exiting a
function). If the minimum number of repetitions has not been analyzed for the parent of the archived
segment, then the parser attempts to repeat the parent. If a repetition cannot be done, then, if
possible, the parser performs ε-fill and then tries to continue the parsing after the parent of the
segment. If the minimum number of repetitions for the parent of the archived segment has already
been analyzed but the maximum number has not, then the parser attempts to repeat the parent, but
on failure it does not perform ε-fill. If a repetition is not possible, then the parser tries to continue
after the parent of the segment. If continuing past the segment's parent is not possible, the parser
will start to progress backward. An unwind c-object is an n-tuple (c-unwind,{use}) with one
c-state.

Restore control object
During the parser's generation, only one global restore c-object is created in the control layer.

This c-object attempts to restore one segment at each step and, at the same time, executes a
backward tunnel, if necessary, from the final state of the rule (or the group) in which the segment's
parent is located to the state after the segment's parent, along with, if necessary, performing a
backward ε-fill depending on the number of repetitions of the segment's parent analyzed so far. A
restore c-object is an n-tuple (c-restore,{incomplete,complete}) with two c-states.

25

3.7 Parsing

Once all the stacks are prepared, all the tunnels are extracted, all the routers and the entire
control layer are created, then the parser running the TP algorithm can start parsing input tokens.
The parsing starts by placing the origin c-object that is created for the selected start rule J∈S and
continues until the parser sends a command (d-done). If the parser aims to find only one syntax
tree, then parsing ends at the first output of (d-success,true). If the parser aims to parse until
it finds the first error in the input tokens, then the parsing ends after the first command (d-error)
is output.

3.8 Properties of the Tunnel parsing

A parser running with the TP algorithm uses the control objects and their states, the tunnels,
and the routers to transition from one internal state to another. According to all of the definitions
above:

• The algorithm parses based on any non-left recursive, well-defined, and reduced advanced
grammar;

• The memory used by the algorithm is linear to the number of tokens in the worst case;

• The algorithm parses in linear time based on any grammar that can be derived from a
deterministic stack automaton, and if there is no recursion in the grammar, the parsing can be
performed with a constant amount of memory;

• The parsing time is exponential in the worst case for some inputs that are parsed based on
certain grammars. To deal with the exponential parsing time, memoization can be used;

• Some LL(k>1) grammars can be parsed with k-1 token look-ahead by trivial optimization;

• The algorithm can parse deterministically and in linear time based on some ambiguous
grammars, and in this case, it outputs the commands to create an ε-condensed tree.

In the TP algorithm, the number of operations performed by the parser at each iterative step is
independent of the number of input symbols.

The non-ε-nodes are ordered before the ε-nodes when all of the nodes are created for a given
symbol, which is a consequence of how the unwind c-object works, how the tunnels are extracted,
and the definitions of the reachable symbols.

3.9 Conclusions

The TP algorithm offers an efficient execution of a push-down automaton with phrase
symbols and countable repetitions, which is represented as connected transition diagrams.

In the chapter, it is shown that templates are used to create automata for the rules in an
advanced grammar. The analysis can be sensitive or insensitive to the case of the characters in the
lexemes. Character ranges are supported directly in the parser grammar. A new subclass of context-
free grammars is determined, based on which strings of tokens can be generated, which the TP
algorithm can parse in linear time and memory.

4 Profiling of automatically generated parsers

The following practical questions are of interest: how much memory is used by the syntax
trees generated by a particular parser, what information they contain, and how long it takes to create
and work with them.

In order to avoid the development of a large number of grammars by hand (which can also
increase the risk of mechanical errors), a specially designed tool for the purpose of the dissertation
is used, and it is called a parser generator profiler (profiler for short). With the help of the profiler, it

26

becomes possible to perform a large number of tests on different parsing machines, which are
generated by different parser generators.

Roughly speaking, a profiler allows the explicit input of one or several grammars or the
programmatic output of an aggregation of grammars differing by selected elements. Then, for each
of the grammars, the profiler creates executable codes for one or more corresponding parsers using
external programs. By running different data through the different parsers, comparative information
about the used resources can be obtained. This process is described below in detail.

For the purpose of profiling, template grammars are created that describe one or more
grammars in a short form. Each template grammar is represented as a script (a string of characters)
that is valid according to a script language specially created for the purpose of the dissertation, and
it is called a template grammar language (template language for short). The template grammars are
imperatively programmed in the template language.

The grammars in ABNF are directly defined – no additional computations are required to use
the grammar. In contrast, template grammars define one or more grammars in a short form, and
therefore additional computations (evaluations) are required to derive all of the object grammars
that are defined by the given template grammar. The object grammars are grammars for which no
evaluation is required.

4.1 Tokens

The lexer module in the parsing machine works like a continuous lexer, as defined above.
This continuous lexer outputs a limit token (of t-limit type) when the number of characters for
which the lexer fails to uniquely determine which rule they belong to is more than 224-1, which is
more than enough. In Figure 4 the grammar in the lexer's specification is shown.

4.2 Template grammar language

In the parser grammar, the phrase symbols are used to distinguish the identifiers that are
keywords from the others. Keywords in the language are: rule, token, template, input,
out, define, in, if, then, and else.

A template language allows different templates (similar to functions) to be called at different
places in the script. The template call will be executed during an evaluation, and the result of the
call will be written directly to the grammar's script at the point of the call.

4.3 Parser generator profiler

The parser generator profiler is a computer program written in C++ that, according to a given
template grammar script, first generates a sequence of object grammars and a sequence of input
data. The parsing of the script is performed with the TP algorithm. Each object grammar is then
automatically translated by the profiler to the form used by various parser generators. These
translated grammars are called profile intermediaries. Each profile intermediary becomes an input to
the various parser generators, which generate files called profile sources. Each profile source is
written in a given programming language and is subsequently compiled with the compiler of the
corresponding language with different compilation options (32/64 bits, optimization level, etc.). The
compiled files are called profile targets. Each execution of each profile target is called a test. After

27

Figure 4: The lexer grammar in the lexer specification of the template language

identifier = ('a'-'z' / 'A'-'Z' / '_')
 *('a'-'z' / 'A'-'Z' / '_' / '0'-'9')
number = 1*('0'-'9')
comment = "//"

the successful completion of all tests, the visualization of the used resources (time and memory) is
performed by the user.

The implementation of the language uses iteration [1, p. 43t] for all of its main functionalities,
because this allows on the template language to be developed template grammars with a large
number of grammar elements. Various iteratively working machines in the profiler inherit the
PGP_Machine class, which controls the iteration, as part of that code is shown in Figure 5.

A diagram of the various steps involved in the processing of template grammars that can be
executed by the profiler is shown in Figure 6, where a domain is the set of values for the variators in
the grammar along with the current template grammar.

4.4 Visualizer

A specially created for the goal utility (visualizer) written in JavaScript, HTML and CSS is
used to visualize the test results.

28

Figure 5: Functions to control the iteration

ECODE PGP_Machine::Run(void) {
 while(true) {
 ECODE ecode = Progress(); // try to do a step
 if (ecode == E_DONE) return E_DONE; // return when done
 if (ecode != E_OK) return ecode; // return on an error
 }
}
ECODE PGP_Machine::Progress(void) {
 switch(FState) {
 case JS_ERROR: return E_ERROR; // had an error
 case JS_DONE : return E_DONE; // already done
 default: if (!Step()){ FState = JS_ERROR; return E_ERROR;}
 }
 return E_OK; // made а progress
}
bool PGP_Machine::Done(void){ FState = JS_DONE; return true;}

Figure 6: First core functionality of the profiler

4.5 Experiments

Measuring the resources that are used by parsing machines at runtime is necessary, because it
matters for practical reasons whether the parsing will complete in a second or two [16].

The settings of different parsers, parser generators, and compilers are usually large in number,
making it difficult to determine the impact of different combinations of settings on an arbitrary
parser that parses based on an arbitrary grammar and analyzes arbitrary data in an arbitrary software
environment on arbitrary hardware and is generated and compiled by a specific parser generator and
compiler with arbitrary settings. For this reason, experiments are done with as short grammars as
possible to eliminate "noise" in the results when there are a large number of different elements in
the grammar.

Four experiments are conducted. The design of each experiment aims to measure the
resources used (time and memory) by the different parsers generated by different parser generators
for different object grammars that are derived from different template grammars.

Experiment 1. Resources during translation
The purpose of the experiment is to give an empirical insight into the effectiveness of

different parsers, without taking into account the complexity of the lexer and parser in the parsing
machine, and not according to their description in the literature or the documentation of the parser
generator, but based on their practical implementations.

Experiment 2. Resources for in depth parsing
The purpose of the experiment is to show how many resources are used for "in depth" parsing

and the construction of different types of syntax trees with such a structure.

Experiment 3. Resources for a concatenation
The purpose of the experiment is to show how much the number of elements in a

concatenation affects the resources used.

Experiment 4. Resources for skippable elements
The purpose of the experiment is to show the resources used when the grammar has skippable

elements that are never found in the input data.

29

Figure 7: Graphical interface of the visualizer with loaded test results

4.6 Conclusions

The fourth chapter presents the design and development of a grammar metaprogramming
language in which the template grammars needed to perform the experiments in the dissertation are
programmed.

The profiler collects measurements of the resources used during recognition and parsing based
on various context-free grammars. The visualization of the collected measurements is done with a
special utility program, also created for the purpose of the dissertation.

Conclusion

The dissertation shows lexical and syntactic analyses of data, which are performed by a
parsing machine that has a parser module that works with the Tunnel parsing algorithm. A common
parsing machine architecture is proposed. The functionalities of the modules in the parsing machine
and the objects that are sent and received by the modules are described in detail.

A template language in which template grammars can be defined and/or programmed, and a
tool (parser generator profiler) that derives one or more object grammars from a given template
grammar are shown. The profiler can experiment with different parsing machines that are generated
by different parser generators based on the derived object grammars.

A good property of the iterative parsing is that a pause can be made after each iterative step.
Another property of the iterative parsing is that the data the algorithm works with is available in
instances of data structures (not in the thread dedicated stack) and can more easily be saved to
(restored from) a memory medium when needed.

Contributions

The dissertation contains the following scientific, scientific-applied, and applied
contributions:

Scientific contributions:

Н1. A conceptual model of a parsing machine is proposed that is suitable for the implementation
of various strategies, methods, approaches, and algorithms, providing some additional
capabilities compared to the existing ones;

Н2. Advanced grammars with phrase symbols are defined as composed of rules and advanced
symbols, with a close structure to the grammars in augmented Backus-Naur form;

Н3. A phrase machine model is proposed that categorizes in advance the different phrases in the
parser grammar in order to speed up the analysis.

Scientific-applied contributions:

НП1. The functionality of the parsing machine is described;

НП2. The functionality of the Tunnel parsing algorithm is described as parsing based on any non-
left recursive advanced grammar, with the parsing time being linear for some ambiguous
grammars and for any grammar that can be derived from a deterministic push-down
automaton (if the derived grammar has no recursion, the parsing can be performed with a
constant amount of memory);

НП3. A metaprogramming language for grammars is designed and developed;

НП4. A parser generator profiler is designed, enabling the performance of tests (measuring the
resources used during recognition and parsing) with parsing machines created by different
parser generators and compilers.

30

Applied contributions:

П1. A prototype of a software tool – a parser generator profiler (including a module for visualizing
the results) is developed, enabling experimentation with a directly entered grammar or with a
programmatically derived, by the tool, aggregation of grammars;

П2. Experiments are conducted using the profiler.

Future Work

The dissertation touches on many topics that are related to data parsing, and for this reason
there are many possible ways of development, the most notable of which are as follows:

• The list of commands that are sent by the parser module and accepted by subsequent modules
can be supplemented with new ones, so that not only syntax trees, but also other syntax
structures can be built;

• In connection with the advanced grammars, the possibility can be explored that after using the
lexeme in a given sequence token (of the t-sequence type), the token to be decomposed
(in the input data of the specific module) into individual character tokens (of the t-
character type), one for each character in the lexeme, and these tokens to be used for
subsequent parsing;

• A natural extension of the current dissertation is the creation of an addition to the Tunnel
parsing algorithm that will enable parsing based on left-recursive grammars;

• Based on the dissertation, an algorithm can be created that verifies whether the parsing of
arbitrary data with the Tunnel parsing algorithm based on a specific grammar will always be
in linear time;

• A possible future improvement of the profiler is adding support for other parser generators
and compilers. The currently supported versions of the various parser generators and
compilers should not be removed so that the tests can show the development of the
technologies related to the automatic generation of parsers over time. This makes the profiler
a future-oriented program;

• Another possible development of the profiler is to measure the compilation time of the profile
sources and the profile targets, the startup time of the profile targets, and the size of each file.

List of publications on the topic of the dissertation

1. N. Handzhiyski and E. Somova, "Tunnel Parsing with counted repetitions", Journal Computer
Science, vol. 21, n. 4, p. 441-462, 2020;

2. N. Handzhiyski and E. Somova, "A parsing machine architecture encapsulating different
parsing approaches", International Journal on Information Technologies and Security (IJITS),
vol. 13, n. 3, p. 27-38, 2021;

3. N. Handzhiyski and E. Somova, "Тhe Expressive Power of the Statically Typed Concrete
Syntax Trees", CEUR Workshop Proceedings, vol. 3061, p. 136-150, 2021;

4. N. Handzhiyski and E. Somova, "Tunnel Parsing with the Token’s Lexeme", Journal
Cybernetics and Information Technologies, vol. 22, n. 2, p. 125-144, 2022;

5. N. Handzhiyski and E. Somova, "Tunnel Parsing with Ambiguous Grammars", Journal
Cybernetics and Information Technologies, vol. 23, n. 2, p. 34-53, 2023;

6. N. Handzhiyski and E. Somova, "Tunnel Parsing", in book "Composability,
Comprehensibility and Correctness of Working Software", CEFP 2019, Lecture Notes in
Computer Science, vol. 11950, p. 325-343, 2023.

31

Noted citations

1. N. Handzhiyski and E. Somova, "Tunnel Parsing with the Token’s Lexeme", Journal
Cybernetics and Information Technologies, vol. 22, n. 2, p. 125-144, 2022:

◦ S. A. Qassir, M. T. Gaata, A. T. Sadiq, "SCLang: Graphical Domain-Specific Modeling
Language for Stream Cipher", Cybernetics and Information Technologies, vol. 23, n. 2, p.
54-71, 2023.

References

[1] H. Kiskinov, "Introduction to Discrete Mathematics", University of Plovdiv "Paisii Hilendarski"
Faculty of Mathematics and Informatics, Plovdiv University Publishing House 2022 (in Bulgarian)
[2] A. V. Aho and J. D. Ullman, “The Theory of Parsing, Translation, and Compiling”, Prentice-Hall
Inc. 1972.
[3] M. Sipser, “Introduction to the Theory of Computation”, 2nd edition, Course Technology 2006.
[4] L. Zheng, S. Ma, Z. Chen and X. Luo, “Ensuring the Correctness of Regular Expressions: A
Review”, International Journal of Automation and Computing, vol. 18, n. 4, p. 521-535, 2021
[5] D. Crocker and P. Overell, “Augmented BNF for Syntax Specifications: ABNF”, RFC 5234,
2008.
[6] P. Kyzivat, “Case-Sensitive String Support in ABNF”, RFC 7405, 2014, visited at
https://www.rfc-editor.org/rfc/rfc7405.html.
[7] N. Chomsky, “On Certain Formal Properties of Grammars”, Information and Control, vol. 2, n.
2, p. 137-167, 1959.
[8] A. W. Burks and H. Wang, “The Logic of Automata”, Journal of the ACM, vol. 4, n. 2/3,
Association for Computing Machinery, p. 193-218/279-297, 1957.
[9] Z. Bednárová and V. Geffert and C. Mereghetti and B. Palano, “Removing nondeterminism in
constant height pushdown automata”, Information and Computation, vol. 237, p. 257-267, 2014.
[10] Y. Bar-Hillel, M. Perles and E. Shamir, “On Formal Properties of Simple Phrase Structure
Grammars”, Zeitschrift für Phonetik, Sprachwissenschaft und Kommunikationsforschung, vol. 14,
p. 143-172, 1961.
[11] A. Afroozeh and A. Izmaylova, “One Parser to Rule Them All”, in book “2015 ACM
International Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software (Onward!)”, p. 151-170, Association for Computing Machinery 2015.
[12] M. G. J. van den Brand and J. Scheerder and J. J. Vinju and E. Visser, “Disambiguation Filters
for Scannerless Generalized LR Parsers”, in book “Compiler Construction”, p. 143-158, Springer
Berlin Heidelberg 2002.
[13] E. R. Van Wyk and A. C. Schwerdfeger, “Context-Aware Scanning for Parsing Extensible
Languages”, in book “Proceedings of the 6th International Conference on Generative Programming
and Component Engineering”, p. 63-72, Association for Computing Machinery 2007.
[14] E. Scott and A. Johnstone, “GLL syntax analysers for EBNF grammars”, Science of Computer
Programming, vol. 166, p. 120-145, 2018.
[15] Unicode® 15.0.0, Unicode Standard, 2022, visited at
https://www.unicode.org/versions/Unicode15.0.0/.
[16] B. Dean, “We Analyzed 5.2 Million Desktop and Mobile Pages - Here’s What We Learned
About Page Speed”, Backlinko, 2019, visited at https://backlinko.com/page-speed-stats.

32

	1 Overview
	1.1 Formal means
	Switching Circuits
	Neural Networks
	Regular expressions
	Generative grammars, Chomsky's hierarchy
	Context-free grammars
	Finite automata
	Push-down automata
	Definition of an algorithm
	Closure of the operations and decidability of the problems

	1.2 Translators
	1.3 Conclusions

	2 Parsing machine
	2.1 Basic concept of the machine
	2.2 Characters and lexemes in the machine
	2.3 Formal definition of a parsing machine
	2.4 Tokens
	2.5 Advanced level 1 grammars
	2.6 Advanced level 2 grammars
	2.6.1 Well-defined advanced grammars
	2.6.2 Sets of symbols in advanced grammars
	2.6.3 Generation of strings
	2.6.4 Sets of tokens
	2.6.5 Metagrammar for advanced grammars

	2.7 Phrase state machine
	2.8 Modules of a parsing machine
	2.9 Syntax trees
	2.10 Conclusions

	3 Tunnel parsing algorithm
	3.1 Basic concept of the algorithm
	3.2 Stacks
	3.3 Automata
	3.3.1 Finding of the shortest paths
	3.3.2 Reachable advanced symbols
	3.3.3 Conflicts
	3.3.4 Trees with empty nodes

	3.4 Tunnels
	3.5 Routers
	3.6 Control objects
	Origin control object
	Terminal control object
	Token control object
	Batch control object
	Epsilon-origin control object
	Epsilon-next control object
	Epsilon-fill control object
	Passage-origin control object
	Passage-minimum control object
	Passage-next control object
	Back-origin control object
	Back-universal control object
	Back-countable control object
	Back-minimum control object
	Back-inner control object
	Unwind control object
	Restore control object

	3.7 Parsing
	3.8 Properties of the Tunnel parsing
	3.9 Conclusions

	4 Profiling of automatically generated parsers
	4.1 Tokens
	4.2 Template grammar language
	4.3 Parser generator profiler
	4.4 Visualizer
	4.5 Experiments
	Experiment 1. Resources during translation
	Experiment 2. Resources for in depth parsing
	Experiment 3. Resources for a concatenation
	Experiment 4. Resources for skippable elements

	4.6 Conclusions

	Conclusion
	References

