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Relevance and aim of the thesis

Relevance and aim of the thesis

Relevance

The fixed point theory and the study of the convergence of high-order it-
erative methods for approximation of polynomial zeros form two large areas of
modern mathematics that are closely interrelated. They are among the most
contemporary mathematical problems and have numerous applications in both
theoretical and applied research. Midst the most basic applications of the itera-
tive methods are the numerical solving polynomial equations with coefficients in
arbitrary normed field and the numerical solving operator equations in Banach
spaces.

The problem of obtaining existence and approximation fixed point theorems
for mappings in metric spaces dates back to 1922, when Banach published his
first work, in which his famous fixed point theorem known as Banach contraction
principle was presented. Nowadays, this area continues its intensive develop-
ment and stands at the base of a lot of methods for solving differential, integral
and nonlinear operator equations.

It is important to note that the first deep generalizations of the Banach’s
theorem were obtained by Browder [6] (1968), Boyd and Wong [5] (1969)
and Ćirić [11] (1971) while Proinov and Nikolova [83] and Proinov [72]
obtained theorems that generalize many fixed point results including the men-
tioned ones. In 2006 and 2007, using the notations gauge function of high order
and iterated contraction mapping, Proinov [59, 62] obtained theorems that
also generalize Banach’s theorem. These two works turned out to be a starting
point for a new general convergence theory for Picard type iteration developed
in 2009-2021 by Proinov [63, 64, 66, 69, 67, 71, 73]. In fact, this theory provides
a research method, originated in [59], which can be called method of the function
of initial conditions.

On the other hand, in the last 60 years the interest of the mathemati-
cians for studying the convergence of iterative methods for approximation of
polynomial zeros has strongly increased. In 1994, Sendov, Andreev and
Kjurkchiev [94], and recently McNamee [30] (2007) and McNamee and
Pan [31] (2013) published monographs dedicated to this topic. Detailed histor-
ical survey on iteration methods for polynomial zeros can be found in Pan [43]
(1997).

In 1891, Weierstrass [102] offered a qualitatively new approach to ap-
proximating zeros of polynomials. He constructed a method for simultaneous
approximation of all zeros of a complex polynomial (Weierstrass’ method). The
first monograph, entirely dedicated to the simultaneous approximation of poly-

4



Relevance and aim of the thesis

nomial zeros was published in 1989 by Petković [46], though two years earlier
Bulgarian mathematician Lubomir Iliev dedicated a chapter of his monograph
[20, Ch. 5] to this topic. The next monographs concerning the iteration meth-
ods for the simultaneous approximation of polynomial zeros are due to Sendov,
Andreev and Kjurkchiev [94, Ch. 4] (1994), Petković, Herceg, and Ilić
[52] (1997), Kyurkchiev [26, Ch. 1, 2, 3, 6] (1998), Petkov and Kyurkchiev
[45] (2000), McNamee [30, Ch. 4] (2007), Petković [48] (2008), Iliev and
Kyurkchiev [19, Ch. 6] (2010) and Cira [10] (2012).

Weierstrass method.

As it was mentioned, in 1891, Weierstrass [102] published the first method
for the simultaneous approximation of all zeros of a complex polynomial f . The
Weierstrass method is defined in Kn by the iteration:

x(k+1) = x(k) −W (x(k)), (1)

where W is defined in Kn by W (x) = (W1(x), . . . ,Wn(x)) with

Wi(x) =
f(xi)

ao
∏

j 6=i(xi − xj)
, (2)

where a0 is the leading coefficient of f .
In the same work Weierstrass [102] proved a semilocal convergence theo-

rem about the method (1) without stating initial conditions that guarantee the
convergence of the method but only proving their existence.

As a consequence of this theorem one can obtain the main theorem of Al-
gebra which stands that the field of complex numbers is algebraically closed.
Thus, Weierstrass has given the first constructive proof of the main theorem of
Algebra. Although, many authors consider Weierstrass’ work as an algebraic
one, in fact it is an elegant study that lays on the border of Mathematical
analysis, Numerical algorithms and Algebra.

In 1913, Kürschak [25] showed that the arguments of Weierstrass are valid
not only in the field of algebraic numbers but in arbitrary valued field. He proved
that any algebraic number field can be extended to complete algebraically closed
field with an absolute value.

In 1960, Durand [14], in 1962, Dochev [12] and, in 1966 Kerner [22]
rediscovered Weierstrass method and therefore it is often called Weierstrass-
Dochev method, Durand-Kerner method etc. It is important to note that Dochev
[12] proved the first local convergence theorem about Weierstrass method. After
that, local convergence theorems about Weierstrass method have been proven
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by Kjurkchiev and Markov [24] (1983), Wang and Zhao [100] (1991),
Hopkins, Marshall, Schmidt and Zlobec [17] (1994), Tilli [97] (1998),
Han [16] (2000), Niell [40] (2001), Yakoubsohn [104] (2002), Proinov and
Petkova [84] (2013) and Proinov and Vasileva [88] (2015).

In 1980, Prešić [57] was the first, after Weierstrass, who published a semilo-
cal convergence theorem about the Weierstrass method. In the next three
decades many authors obtained semilocal convergence theorems under different
initial conditions: Zheng [107, 108] (1982, 1987), Wang and Zhao [106, 101]
(1993, 1995), Petković, Carstensen and Trajković [49] (1995), Petković
[47] (1996), Petković and Herceg [50] (1996), Petković, Herceg and Ilić
[53] (1998), Batra [3] (1998), Han [16] (2000), Petković and Herceg [51]
(2001). In 2006, Proinov [59, 60] published a semilocal convergence theorem
that generalizes, improves and complements all previous results in this direc-
tion. In 2014, Proinov and Petkova [86], using Weierstrass’ ideas, obtained
a semilocal convergence theorem about Weierstrass method under a different
type of initial conditions. This theorem can be considered as a quantitative
version of the Weierstrass’ result. A bit later, Proinov [66] has provided a
comprehensive study of the local and the semilocal convergence of Weierstrass
method, which results improve and complement all existing results of the kind
and puts an end to this problem, so far.

Modified Weierstrass method.
In 2016, Nedzhibov [34] published two modifications of Weierstrass method

(1). The first of them coincide with Weierstrass method (1) when f has only
nonzero roots, i.e., when f(0) 6= 0. The second one, that we shall call modified
Weierstrass method, is defined by the following iteration:

x(k+1) = T (x(k)), k = 0, 1, 2, . . . , (3)

where T is defined in Kn with T (x) = (T1(x), . . . , Tn(x)) and

Ti(x) = x2i /(xi +W i(x)), (4)

and W i(x) is Weierstrass’ correction defined by (2).
In recent years, in several articles Nedzhibov [34, 35, 36, 38, 37, 39] has

proved local convergence theorems under different initial conditions as well as
a semilocal convergence theorem about the modified Weierstrass method (3).

Dochev-Byrnev method.
The second simultaneous method in the literature was presented by Bulgar-

ian mathematicians Dochev and Byrnev [13] in 1964. Dochev-Byrnev method is
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defined by the following fixed point iteration:

x(k+1) = T (x(k)) k = 0, 1, 2, . . . , (5)

where T is defined in Kn by T (x) = (T1(x), . . . , Tn(x)) with

Ti(x) = xi −
f(xi)

g′(xi)

(
2− f ′(xi)

g′(xi)
+

1

2

f(xi)

g′(xi)

g′′(xi)

g′(xi)

)
, (6)

and the polynomial g is defined by g(z) = co
∏n

j=1(z − xj). In 1972, Prešić
[56] rediscovered Dochev-Byrnev method (5) by defining its iteration function
T : D ⊂ Kn → Kn in the following equivalent form:

Ti(x) = xi −Wi(x)

1−
∑
j 6=i

Wj(x)

xi − xj

 , (7)

where W i(x) is the Weierstrass’ correction defined by (2).
In 1974, Milovanović [32] gave an elegant derivation of (5) while in 1983,

the method (5) was rediscovered again by Tanabe [96] which resulted in it widely
known under the name Tanabe’s method (see e.g. [48] and references therein).
In fact, the equivalence of the iteration functions (6) and (7) was proved in only
2016 by Proinov [67, Theorem 4.1].

The local convergence of Dochev-Byrnev method (5) was firstly studied by
Semerdzhiev and Pateva [93]. In 1982, Kyurkchiev [23] (see also [94, Theo-
rem 19.1]) proved a theorem that improves the results of the above mentioned
authors. In 2011, Toseva, Kyurkchiev and Iliev [98, Theorem A] proved a
local convergence result about the method (5) working with the iteration func-
tion (7) but according to the equivalence between (7) and (6) this result is in fact
a consequence of the mentioned Kyurkchiev’s theorem. Very recently, Pavkov,
Kabadzhov, Ivanov and Ivanov [44] have obtained local convergence theo-
rems about a family of simultaneous methods that includes, as a special case,
Dochev-Byrnev method.

Semilocal convergence theorems about Dochev-Byrnev (Tanabe) method (5)
have been proven by Petković, Herceg and Ilić [52, 53] and Ilić and
Herceg [18]. In 2016, Proinov [67, Theorem 4.5] proved a semilocal conver-
gence theorem about Dochev-Byrnev method (5) that generalizes and improves
all previous such kind of results while Ivanov [21] proved a semilocal con-
vergence theorem about the mentioned family of simultaneous methods that
includes Dochev-Byrnev method.
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Ehrlich’s (Börsch-Supan’s) method.

The next simultaneous method in the literature was derived by Ehrlich [15],
in 1967, and can be defined by the following fixed point iteration:

x(k+1) = F (x(k)) k = 0, 1, 2, . . . , (8)

where F is defined in Kn by F (x) = (F1(x), . . . , Fn(x)), with

Fi(x) = xi − f(xi)

f ′(xi)− f(xi)
∑
j 6=i

1

xi − xj

−1 . (9)

In 1970, Börsch-Supan [4] published the following simultaneous method:

x(k+1) = G(x(k)) k = 0, 1, 2, . . . , (10)

where G is defined in Kn by G(x) = (G1(x), . . . , Gn(x)), with

Gi(x) = xi −Wi(x)

1 +
∑
j 6=i

Wj(x)

xi − xj

−1 . (11)

In 1982, Werner [103] proved that the iteration functions (9) and (11) are
equivalent (see also Carstensen [7]).

Local and semilocal convergence theorems about Ehrlich’s (Börsch-Supan’s)
method which generalize and improve all previous such results have been ob-
tained by Proinov [68, 67, 70], Ivanov [21] and Pavkov, Kabadzhov, Ivanov
and Ivanov [44].

Methods with accelerated convergence.

In 1977, Nourein [41, 42] constructed two fourth-order simultaneous methods
based on the methods of Ehrlich and Börsch-Supan. Namely, the first of them
is defined by x(k+1) = F(x(k)), where the iteration function F is defined in Kn

by F(x) = (F1(x), . . . ,Fn(x)), with

Fi(x) = xi −
f(xi)

f ′(xi)− f(xi)
∑
j 6=i

1

xi − xj + f(xj)/f ′(xj)

, (12)
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and the second one is defined by x(k+1) = G(x(k)), where the iteration function
G is defined in Kn by G(x) = (G1(x), . . . ,Gn(x)) with

Gi(x) = xi −
Wi(x)

1 +
∑
j 6=i

Wj(x)

xi − xj −Wi(x)

. (13)

Obviously, each of these methods is obtained by combining two methods.
The first one is obtained by combining the Ehrlich’s iteration function (9) with
the famous Newton’s one while the second is obtained by combining Börsch-
Supan’s iteration function (11) with the Weierstrass’ iteration function (2).
Nowadays, these methods are widely known (see, e.g., [48, Chapter 1]) as:

• Ehrlich’s method with Newton’s correction;

• Börsch-Supan’s method with Weierstrass’ correction.

In 2006, Proinov [61] published a semilocal convergence theorem about the
method (13) while Proinov and Vasileva [91] proved local and semilocal
convergence theorems about the method (12) and thus all previous results about
these two methods are now improved.

After the mentioned Nourein’s works, many authors (see, e.g., [54, 99, 55, 80,
27, 78]) started to use their ideas in order to construct different methods with
accelerated convergence which shall be further called simultaneous methods with
corrections. In 1987, Wang and Wu [99] were the first who constructed and
studied a method with arbitrary correction which however do not accelerated the
method’s convergence. Very recently, Proinov and Vasileva [92] constructed
and studied the local and the semilocal convergence of a family of Ehrlich’s
type simultaneous methods with arbitrary correction and arbitrary convergence
order. In 2023, Proinov and Ivanov [79] constructed and studied a family of
Sakurai-Torii-Sugiura type, with arbitrary correction and arbitrary convergence
order, for multiple polynomial zeros.

Aim of the dissertation

The aim of the present dissertation is to solve the following problems:

Problem 1. To investigate the convergence of the modified Weierstrass method
(3) and thus to obtain local and semilocal convergence theorems that generalize,
improve and complement all previous results in this direction.
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Chapter 1. A general convergence theory for iterative processes in cone
normed spaces

Problem 2. To study the local convergence of Dochev-Byrnev method (5) and
thus to obtain theorems that generalize, improve and complement all previous
results of this kind.

Problem 3. To construct a family of simultaneous methods of Dochev-Byrnev
type with accelerated convergence. To obtain local and semilocal convergence
theorems about the new family as well as about some of its particular members.

Problem 4. To conduct some numerical experiments in order to show the
applicability of the obtained semilocal convergence results about all of the studied
methods.

A summary of the obtained results

The present dissertation is dedicated to the study of the convergence of
the modified Weierstrass method (3) as well as the convergence of a newly
constructed family of simultaneous methods of Dochev-Byrnev type with accel-
erated convergence which includes the classical Dochev-Byrnev method (5).

The dissertation consists of introduction, four chapters, conclusion and ref-
erences. The conclusion includes: a summary of the results obtained, list of the
publications on the dissertation, dissemination of the results and declaration of
originality.

The content of the dissertation by chapters and paragraphs is briefly outlined
here.

Chapter 1. A general convergence theory for iterative pro-
cesses in cone normed spaces

This chapter has a referential nature. It is dedicated to a general conver-
gence theory for the convergence of iterative processes in cone normed spaces
developed by Proinov [63, 64, 66, 69, 67, 71, 73] during the period from 2009
to 2021.

In Section 1.1 we present some notations and definitions from the theory
of the fields and the theory of the cone normed spaces that are the basis of the
present dissertation.

In Section 1.2, some important inequalities in Kn that play a crucial role
in the proofs of our results are presented.

Further on, K[z] denotes the ring of polynomials (of one variable) over the
field K.
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Chapter 1. A general convergence theory for iterative processes in cone
normed spaces

The vector space Rn is endowed with the standard coordinate-wise ordering
� defined by x � y ⇔ xi ≤ yi for all i ∈ In and the vector space Kn is equipped
with a p-norm ‖·‖p for some 1 ≤ p ≤ ∞ and with a vector norm ‖ · ‖ with values
in Rn defined by

‖x‖ = (|x1|, . . . , |xn|) and ‖x‖p =

(
n∑

i=1

|xi|p
)1/p

(1 ≤ p ≤ ∞).

Also, we define the functions d : Kn → Rn and δ : Kn → R+ by

d(x) = (d1(x), . . . , dn(x)) with di(x) = min
j 6=i
|xi − xj | and δ(x) = min

i6=j
di(x)

(14)
and for two vectors x ∈ Kn and y ∈ Rn we use the denotation x/y for the vector
in Rn defined by x/y = (|x1|/y1, · · · , |xn|/yn) provided that y has only nonzero
components. For a given p (1 ≤ p ≤ ∞), we always define q by 1 ≤ q ≤ ∞
with 1/p+ 1/q = 1 and for n ∈ N, we define the numbers a = (n − 1)1/q and
b = 21/q.

The main goal of Section 1.3 is to provide some basic results of the men-
tioned Proinov’s theory for the convergence of the iterative processes of the
Picard type xk+1 = Txk, k = 0, 1, 2, . . . ,where T : D ⊂ X → X is an iteration
function in cone metric space X over a solid vector space. The main role in this
theory is played by the notation function of initial conditions.

Let f ∈ K[z] be a polynomial of degree n ≥ 2. A vector ξ ∈ Kn will be called
a root-vector of f ∈ K[z] if f(z) = a0

∏n
i=1(z − ξi) for all z ∈ K, where a0 ∈ K.

Let ξ ∈ Kn be a root-vector of f . Examples for functions of initial conditions
that are used to prove convergence theorems about simultaneous methods are
as follows:
• Function E : Kn → R+, defined by

E(x) =

∥∥∥∥x− ξd(ξ)

∥∥∥∥
p

. (15)

• Function E : D→ R+, defined by

E(x) =

∥∥∥∥x− ξd(x)

∥∥∥∥
p

. (16)

• Function Ef : Kn → R+, defined by

Ef (x) =

∥∥∥∥Wf (x)

d(x)

∥∥∥∥
p

. (17)
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Chapter 2. New results about a modified Weierstrass method

All the above formulated functions are used in the present dissertation.
In 2021, Proinov [73] developed his theory by the following definitions

that are used in the proofs of the local convergence theorems in Section 2.2 of
Chapter 2, in Chapter 3 and Chapter 4.

Definition 1.14 ([73]). The function F : D ⊂ Kn → Kn is said to be an iteration
function of first kind at a point ξ ∈ D if there is a quasi-homogeneous function
φ : J → R+ of exact degree m ≥ 0 such that for each x ∈ Kn with E(x) ∈ J the
following conditions are satisfied: x ∈ D and ‖F (x)− ξ ‖ � φ(E(x)) ‖x− ξ ‖,
where the function E : Kn → R+ is defined by (15). The function φ is said to
be control function of F .

Definition 1.15 ([73]). A function F : D ⊂ Kn → Kn is called iteration function
of second kind at a point ξ ∈ Kn if there exists a nonzero quasi-homogeneous
function β : J → R+ such that for each vector x ∈ D with E(x) ∈ J the follow-
ing hold: x ∈ D and ‖F (x)− ξ ‖ � β(E(x)) ‖x− ξ ‖, where the function E is
defined by (16). The function β is said to be control function of F .

In Section 1.4, we provide some theorems of Proinov [69] that gives us a
possibility to transform local convergence theorems of the first and second kind
into semilocal ones. We have to note that the semilocal convergence theorems
are of great practical importance because of their computationally verifiable
initial conditions and error estimates.

Chapter 2. New results about a modifiedWeierstrass method

This chapter consists of five sections and is dedicated to the study of the
convergence of the modified Weierstrass method (3).

In Section 2.1, the local convergence of the first kind of the modified Weier-
strass method (3) is studied. In this section, we present the first main result in
the dissertation. This result improves and complements all previous results of
the kind about this method:

Theorem 2.1. Let f ∈ K[z] be a polynomial of degree n ≥ 2 possessing n simple
roots in K and such that f(0) 6= 0, ξ ∈ Kn be a root-vector of f and 1 ≤ p ≤ ∞.
Suppose x(0) ∈ Kn is an initial approximation satisfying

E(x(0)) =

∥∥∥∥x(0) − ξ∆(ξ)

∥∥∥∥
p

<
1

b
and Φ(E(x(0))) < 2, (18)

where the function ∆: Kn → Rn is defined by

∆(x) = (∆1(x), . . . ,∆n(x)) and ∆i(x) = min{|xi|, di(x)} (i ∈ In) (19)
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Chapter 2. New results about a modified Weierstrass method

and the real function Φ is defined by

Φ(t) =
1 + t

1− t

(
1 +

a t

(n− 1)(1− bt)

)n−1

.

Then the iteration (3) is well defined and converges quadratically to ξ with error
estimates for all k ≥ 0

‖x(k+1) − ξ ‖ � λ2
k

‖x(k) − ξ ‖ and ‖x(k) − ξ ‖ � λ2
k−1 ‖x(0) − ξ ‖, (20)

where λ = φ(E(x(0))) with φ defined by

φ(t) =
ψ(t)− 1 + t

1− t− t ψ(t)
and ψ(t) =

(
1 +

a t

(n− 1)(1− bt)

)n−1

. (21)

Also, we have the following estimate of the asymptotic error constant:

lim sup
k→∞

‖x(k+1) − ξ‖p
‖x(k) − ξ‖2p

≤ a+ 1

∆̃(ξ)
, (22)

where ∆̃(ξ) = min{δ(ξ), γ(ξ)}, δ(ξ) = mini 6=j |ξi − ξj | and γ(ξ) = mini∈In |ξi|.

In Section 2.2, the local convergence of the second kind of the modified
Weierstrass method (3) is studied.

Before stating our main result, we define the functions γ and β by

γ(t) =

(
1 +

a t

n− 1

)n−1

and β(t) =
γ(t)− 1 + t γ(t)

1− t γ(t)
. (23)

The next theorem is our main result in this section. It improves a result of
Nedzhibov [39].

Theorem 2.2. Let f ∈ K[z] be a polynomial of degree n ≥ 2 which has n
simple zeros in K and ξ be a root-vector of f . Suppose x(0) ∈ Kn is an initial
approximation with pairwise distinct nonzero components satisfying the initial
condition

E(x(0)) =

∥∥∥∥x(0) − ξ∆(x(0))

∥∥∥∥
p

< η and Φ(E(x(0))) ≤ 2, (24)

where the real function Φ is defined by Φ(t) = (1 + (2 + b)t) γ(t) with γ defined
by (23) and η is the unique solution of the equation t γ(t) = 1 in the interval
[0,∞). Then the iteration (3) is well defined and converges Q-quadratically to
ξ with the following error estimates for all k ≥ 0:

‖x(k+1) − ξ ‖ � θ λ2
k

‖x(k) − ξ ‖ and ‖x(k) − ξ ‖ � θk λ2
k−1 ‖x(0) − ξ ‖, (25)
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Chapter 3. New results about Dochev-Burnev method

where λ = φ(E(x(0))), θ = ψ(E(x(0))), φ = β/ψ and ψ(t) = 1 − bt(1 + β(t)).
Besides, the estimate of the asymptotic error constant (22) holds.

In Section 2.3, a semilocal convergence theorem about the method (3) is
obtained.

Theorem 2.3. Let f ∈ K[z] be a polynomial of degree n ≥ 2, and let x(0) ∈ Kn

be an initial approximation with pairwise distinct nonzero components satisfying

Ef (x(0)) =

∥∥∥∥W (x(0))

∆(x(0))

∥∥∥∥
p

<
R(1 + (b− 1)R)

(1 + bR)(1 + (a+ b− 1)R)
, (26)

where R is the number

R =
n−1
√
h− 1

b ( n−1
√
h− 1) + a/(n− 1)

and the number h is given by

h =
3b− a− 1 +

√
(3b− a− 1)2 + 8(b+ 1)(a+ 1− b)

2(b+ 1)
.

Then f has only simple zeros in K and the iteration (3) is well defined and
converges quadratically to a root-vector ξ of f .

In Section 2.4 several numerical experiments are conducted to show the
applicability of Theorem 2.3.

In Section 2.5 we present a theoretical and a numerical comparison between
the classical Weierstrass method and the modified Weierstrass method.

Chapter 3. New results about Dochev-Burnev method

Third chapter is dedicated to the study of the local convergence of Dochev-
Burnev method (5).

In Section 3.1, a local convergence theorem of the first kind is proved.
Before stating our theorem, we define the real functions φ and µ, by

φ(t) = (µ(t)− 1)2 +
at2 µ(t)2

(1− t)(1− bt)
and µ(t) =

(
1 +

a t

(n− 1)(1− b t)

)n−1

.

(27)
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Chapter 4. A new family of methods with accelerated convergence

Theorem 3.1. Let f ∈ K[z] be a polynomial of degree n ≥ 2 which has n simple
zeros in K, ξ ∈ Kn be a root-vector of f and 1 ≤ p ≤ ∞. Suppose x(0) ∈ Kn is
an initial approximation satisfying

E(x(0)) < 1/b and Φ(E(x(0))) < 2, (28)

where E is defined by (15) and Φ is defined by

Φ(t) = µ(t)

(
1 +

at2

(1− t)(1− bt)

)
with µ defined by (27). Then Dochev-Byrnev iteration (5) is well defined and
converges Q-cubically to ξ with the following error estimates for all k ≥ 0:

‖x(k+1) − ξ ‖ � λ3
k

‖x(k) − ξ ‖ and ‖x(k) − ξ ‖ � λ(3
k−1)/2 ‖x(0) − ξ ‖, (29)

where λ = φ(E(x(0))) and φ is defined by (27). Also, we have the following
estimate of the asymptotic error constant:

lim sup
k→∞

‖x(k+1) − ξ‖p
‖x(k) − ξ‖3p

≤ a

δ(ξ)2
, (30)

where δ is defined by (14).

In Section 3.2, we prove the second main result in this chapter, which is
a local convergence theorem of the second kind about Dochev-Byrnev method
(5).

For the purposes of the theorem, we define the function β by

β(t) = (µ(t)− 1)2 +
a t2 µ(t)2

1− t
, where µ(t) =

(
1 +

a t

n− 1

)n−1

(31)

and the functions Ψ and ψ as follows:

Ψ(t) = 1− bt− β(t)(1 + bt) and ψ(t) = 1− bt(1 + β(t)). (32)

Theorem 3.2. Let f ∈ K[z] be a polynomial of degree n ≥ 2 which has n simple
zeros in K, ξ ∈ Kn be a root-vector of f and 1 ≤ p ≤ ∞. Suppose x(0) ∈ Kn is
an initial approximation satisfying

E(x(0)) < 1 and Ψ(E(x(0))) ≥ 0, (33)

where E is defined by (15) and Ψ is defined by (32). Then Dochev-Byrnev
iteration (5) is well defined and converges Q-cubically to ξ with the following
error estimates for all k ≥ 0:

‖x(k+1)−ξ ‖ � θλ3
k

‖x(k)−ξ ‖ and ‖x(k)−ξ ‖ � θkλ(3
k−1)/2 ‖x(0)−ξ ‖, (34)

where λ = φ(E(x(0))), θ = ψ(E(x(0))), φ = β/ψ and ψ is defined by (32).
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Chapter 4. A new family of methods with accelerated con-
vergence

This chapter consists of six sections and is dedicated to the study of the
convergence of a newly constructed family of simultaneous methods of Dochev-
Byrnev type with accelerated convergence.

In Section 4.1, we first construct a new family of simultaneous methods
of Dochev-Byrnev type with accelerated convergence which is called Dochev-
Byrnev method with correction and then we investigate its local convergence of
the first kind.

Let Ω: D ⊂ Kn → Kn is an arbitrary iteration function then we define the
following family of simultaneous methods:

x(k+1) = T(x(k)), k = 0, 1, 2, . . . , (35)

where T is defined by T(x) = (T1(x), . . . ,Tn(x)) and

Ti(x) = xi − 2Wi(x) + Wi(x)2

f ′(xi)
f(xi)

−
∑
j 6= i

1

xi − Ωj(x)

 ,

and Wi(x) is defined by Wi(x) = f(xi)/(a0
∏
j 6= i

(xi − Ωj(x))).

For an arbitrary quasi-homogeneous function ω : J → R+ of exact degree
m ≥ 0 and an integer n ≥ 2, we define the function γ : J → R+ as follows

γ(t) = t (1 + ω(t)q)1/q . (36)

Using the function γ defined by (36), we define the function φ as follows:

φ(t) = (µ(t)−1)2+
aµ(t)2ω(t) t2

(1− t)(1− γ(t))
with µ(t) =

(
1 +

a t ω(t)

(n− 1)(1− γ(t))

)n−1

.

(37)
The next theorem is the main result in this section.

Theorem 4.1. Let f ∈ K[z] be a polynomial of degree n ≥ 2 which has n simple
zeros in K, ξ ∈ Kn be a root-vector of f , 1 ≤ p ≤ ∞ and let Ω: D ⊂ Kn → Kn

be an iteration function of first kind at ξ with control function ω : J → R+ of
exact degree m ≥ 0. Suppose x(0) ∈ Kn is an initial approximation satisfying

E(x(0)) ∈ J, γ(E(x(0))) < 1 and Φ(E(x(0))) < 2, (38)
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where E is defined by (15), γ is defined by (36) and Φ is defined as follows:

Φ(t) = µ(t)

(
1 +

aω(t) t2

(1− t)(1− γ(t))

)
(39)

with µ defined by (37). Then the iteration (35) is well defined and converges to
ξ with Q-order r = m+ 3 and with the following error estimates for all k ≥ 0:

‖x(k+1) − ξ ‖ � λr
k

‖x(k) − ξ ‖ and ‖x(k) − ξ ‖ � λ
rk−1
r−1 ‖x(0) − ξ ‖, (40)

where λ = φ(E(x0)) and φ is defined by (37). Also, we have the following esti-
mate of the asymptotic error constant:

lim sup
k→∞

‖x(k+1) − ξ‖p
‖x(k) − ξ‖rp

≤ a

δ(ξ) r−1 lim
t→0+

ω(t)

tm
, (41)

where δ is defined by (14).

In Section 4.2, a local convergence theorem of the second kind about the
method (35) is obtained.

Before stating our theorem, for an arbitrary quasi-homogeneous function
ω : J → R+ of exact degree m ≥ 0 and an integer n ≥ 2, we define the function
γ : J → R+ as follows:

γ(t) =

{
t (1 + ω(t)), if Ω is not identity function,
0, if Ω is identity function. (42)

Using the function γ, we define the function β as follows:

β(t) = (µ(t)− 1)2 +
aµ(t)2ω(t) t2

(1− t)(1− γ(t))
, (43)

where µ is defined by (37).
The next theorem is the main result in this section.

Theorem 4.2. Let f ∈ K[z] be a polynomial of degree n ≥ 2 which has n
simple zeros in K, ξ ∈ Kn be a root-vector of f , and let Ω: D ⊂ Kn → Kn be an
iteration function of second kind at ξ with control function ω : J → R+ of exact
degree m ≥ 0. Suppose x(0) ∈ Kn is an initial approximation satisfying

E(x(0)) ∈ J ∩ [0, 1), γ(E(x(0))) < 1 and Ψ(E(x(0))) ≥ 0, (44)

17



Chapter 4. A new family of methods with accelerated convergence

where E is defined by (16) and Ψ is defined by (32) with β defined by (43). Then
the iteration (35) is well defined and converges to ξ with Q-order r = m+3 and
with the following error estimates for all k ≥ 0:

‖x(k+1) − ξ ‖ � θ λr
k

‖x(k) − ξ ‖ and ‖x(k) − ξ ‖ � θk λ
rk−1
r−1 ‖x(0) − ξ ‖, (45)

where λ = φ(E(x(0))), θ = ψ(E(x(0))), ψ is defined by (32) with β defined by
(43) and φ = β/ψ.

In Section 4.3, as consequences of Theorem 4.1 are Theorem 4.2, we obtain
local convergence theorems of the first and second kind about the following
particular members of our new family (35):

(i) Dochev-Byrnev method (DB), if Ω(x) = x.

(ii) Dochev-Byrnev method with Weierstrass’ correction (DBW), if
Ω is Weierstrass’ iteration function defined by (2).

(iii) Dochev-Byrnev method with Newton’s correction (DBN), if Ω is
Newton’s iteration function Ωi(x) = xi − f(xi)/f

′(xi).

(iv) Dochev-Byrnev method with Ehrlich’s correction (DBE), if Ω is
Ehrlich’s iteration function defined by (9).

(v) Dochev-Byrnev method with Halley’s correction (DBH), if Ω is
Halley’s iteration function in Kn defined by

Ωi(x) = xi −
f(xi)

f ′(xi)

(
1− 1

2

f(xi)

f ′(xi)

f ′′(xi)

f ′(xi)

)−1
.

In Section 4.4, we get the following semilocal convergence theorem about
Dochev-Byrnev method with correction (35):

Theorem 4.3. Suppose f ∈ K[z] is a polynomial of degree n ≥ 2 with only sim-
ple zeros in K and let Ω: D ⊂ Kn → Kn be an iteration function of second kind
with control function ω : J→ R+ of exact degree m ≥ 0. Suppose x(0) ∈ Kn is
an initial guess with pairwise distinct components satisfying the following ini-
tial conditions: Ef (x(0)) < 1/(1 +

√
a)2, h(Ef (x(0))) ∈ J , γ(h(Ef (x(0)))) < 1

and Ψ(h(Ef (x(0)))) ≥ 0, where Ef , γ and Ψ are defined by (17), (42) and (32)
with β defined by (43) and h defined by

h(t) = 2t/
(

1− (a− 1)t+
√

(1− (a− 1)t)2 − 4t
)
. (46)

Then f has only simple zeros in K and the iteration (35) is well defined and
converges to a root-vector ξ of f with Q-order r = m+ 2.
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Summary of the obtained results

In Section 4.5, as a consequence of Theorem 4.3, we get semilocal con-
vergence theorems about the above defined particular members of the family
(35).

In Section 4.6, two numerical examples which show the applicability of
Theorem 4.3 and emphasize the behavior of the above defined particular mem-
bers of the family (35) are conducted.

Conclusion

Summary of the obtained results
The main contributions in the present dissertation are:

1. Two local convergence theorems (Theorem 2.1 and Theorem 2.2) with
apriori and aposteriori error estimates and with an estimate of the asymp-
totic error constant of the modified Weierstrass method (3) are obtained.
These theorems improve and complement all previous results of the kind
about this method.

2. A semilocal convergence theorem (Theorem 2.3) which improves and com-
plements all previous such results about the modified Weierstrass method
is obtained. This theorem is of great practical importance because of its
computationally verifiable initial conditions.

3. Based on the obtained results, theoretical and numerical comparisons
between the modified Weierstrass method and the classical Weierstrass
method is provided in Section 2.5. Numerical examples are presented to
show the applicability of the semilocal theorem (Section 2.4).

4. Two local convergence theorems (Theorem 3.1 and Theorem 3.2) under
two different kinds of initial conditions, error estimates and estimate of the
asymptotic error constant of Dochev-Byrnev method are obtained. The
first of them generalize, improve and complement all previous such results
and the second one is the first of the kind in the mathematical literature.

5. A new family of simultaneous methods of Dochev-Byrnev type with ac-
celerated convergence (Dochev-Byrnev method with correction) is con-
structed.

6. Two local convergence theorems (Theorem 4.1 and Theorem 4.2) about
Dochev-Byrnev method with correction are obtained. As consequences,
local convergence theorems about four particular members of the family,
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