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INTRODUCTION

General characteristics of the thesis

In the presented dissertation, generalizations of Banach ’s fixed point theorem related
to coupled fixed points, coupled best proximity points and their applications are considered.
Generalizations of Ekeland’s variational principle are considered, which are related to sets
generated by maps with the mixed monotone property. A technique for proving results about
existence of coupled fixed points for maps with the mixed monotone property, using the
generalizations of the variational principle, is proposed. The results for the existence and
uniqueness of coupled best proximity points are enriched by finding the error estimates, when
using sequences of successive iterations. It has been proved for coupled fixed points and
coupled best proximity points (x, y) that they must satisfy x = y, provided that the classical
model from [26] is used. A generalization of the concepts of coupled fixed points and coupled
best proximity points, ordered pair of cyclic maps is proposed, which allows the ordered
pair (x, y) to consist of two different points. An approach is proposed to reduce systems
of equations to a problem for coupled fixed points or coupled best proximity points. The
possibilities for finding exact solutions of systems of equations with the help of the enriched
theory of coupled fixed points and coupled best proximity points are illustrated. The concepts
of coupled fixed points and coupled best proximity points in modular functional spaces are
introduced. Possibilities for solving systems of equations with the help of cyclic maps in
modular functional space, which is generated by the system of equations, are illustrated. A
new class of maps is defined, which is different from both cyclic and non-cyclic maps. This
class is called semi-cyclic maps. This class arises naturally in the study of market equilibrium
in duopoly markets. Conditions for the existence and uniqueness of coupled fixed points
and coupled best proximity points for semi-cyclic maps have been found. Models of duopoly
markets have been constructed with the help of semi-cyclic maps, which significantly enriches
the classical theory of duopoly markets. The obtained results are illustrated with different
models. The ideas for generalizing of coupled fixed points and coupled best proximity points
have been further developed for tripled fixed points and tripled best proximity points, as
well as semi-cyclical maps of three variables, which naturally arise when modeling markets
dominated by three participants.

INTRODUCTION

Fixed point theorems, initiated by Banach’s Contraction Principle [5] has proved to be
a powerful tool in nonlinear analysis.

Fixed point theory of course entails the search for a combination of conditions on a set
X and a mapping T : X → X which, in turn, assures that T leaves at least one point of
X fixed, i.e. ξ = T (ξ) for some ξ ∈ X. Since its publication [5] there is large number of
applications and generalizations.

There are two main directions in the generalizations. The first one is to alter the
underlying space X and the second one is to alter the contractive type condition.
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Partially ordered metric spaces and maps with the mixed monotone property

Notations, used in the thesis

We will denote the set of all natural numbers by N and the set of all real numbers by
R. With the capital letters A,B,C,X, Y, Z we will denote sets of arbitrary structure. We
will denote with the small letters x, y, z, w, u, v, t the elements of the considered sets. We will
denote by ρ the metric defined in a metric space (X, ρ).

We will denote also by ρ the function modular, that defines the modular function space
Lρ. As far as the metric function ρ(·, ·) depends on two variables and the function modular
ρ(·) depends on one variable, and they are considered in different chapters, there will be no
misunderstanding.

By X × Y we will consider the Cartesian product, i.e. u = (x, y) ∈ X ×X.
A distance bwtween two subsets A,B ⊂ X, provided that (X, ρ) is a metric space, is

defined by the function dist(A,B) = inf{ρ(x, y) : x ∈ A, y ∈ B}.

Partially ordered metric spaces and maps with the mixed monotone property

Following [11, 26], let X be a set and let � be a partial order in X, then (X,�) is called
a partially ordered set.

Definition 1. ([11, 26]) Let (X,�) be a partially ordered set and let F : X ×X → X.
The function F is said to have the mixed monotone property if

for any x1, x2, y ∈ X, such that x1 � x2 there holds F (x1, y) � F (x2, y)

and

for any y1, y2, x ∈ X, such that y1 � y2 there holds F (x, y1) � F (x, y2).

Following [11, 26] let (X, ρ,�) be a partially ordered complete metric space. We endow
the product space X×X with the following partial order (u, v) � (x, y), provided that x � u
and y � v holds simultaneously and with the following metric

d((x, y), (u, v)) = ρ(x, u) + ρ(y, v)

for (x, y), (u, v) ∈ X ×X.

Coupled fixed points in partially ordered metric spaces

One direction for generalization of fixed points is the notion of coupled fixed points [26],
where maps with the mixed monotone property in partially ordered by a cone Banach spaces
are investigated. Later this idea was developed for maps with the mixed monotone property
in partially ordered metric spaces [11].

Definition 2. ([11, 26]) Let X be a set and let F : X × X → X. An ordered pair
(x, y) ∈ X ×X is called coupled fixed point of F if x = F (x, y) and y = F (y, x).

The authors in [11] have refined the technique from [26] in order to generalize the
results from [26]. They have presented an easier to apply technique for the investigation of
the existence and uniqueness of coupled fixed points, which is widely used today.
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INTRODUCTION

Ekeland’s variational principle

Ekeland proved a variational principle in [18]. In a series of articles [19, 20] he enriches
the results. Later he presented a more concise proof [21], which technique we will use. In
the same article [21], various applications of the variational principle in different fields of
mathematics are presented.

Ekeland’s variation principle has many generalizations and applications in different fields
of Mathematics [13, 16].

Uniformly convex Banach spaces

The best proximity results need norm-structure of the underlying space X.
When we investigate a Banach space (X, ‖ · ‖), we will always consider the distance

between the elements to be generated by the norm ‖ ·‖, i.e. ρ(x, y) = ‖x−y‖. We will denote
the unit sphere and the unit ball of a Banach space (X, ‖ · ‖) by SX and BX respectively.

The assumption that the Banach space (X, ‖ · ‖) is uniformly convex plays a crucial role
in the investigation of best proximity points.

Definition 3. ([15]) Let (X, ‖ · ‖) be a Banach space. For every ε ∈ (0, 2] we define the
modulus of convexity of ‖ · ‖ by δ‖·‖(ε) = inf

{
1−

∥∥x+y
2

∥∥ : x, y ∈ BX , ‖x− y‖ ≥ ε
}

. The norm
is called uniformly convex if δX(ε) > 0 for all ε ∈ (0, 2]. The space (X, ‖ · ‖) is then called a
uniformly convex Banach space.

Lemma 1. ([22]) Let A be a nonempty closed, convex subset, and B be a nonempty
closed subset of a uniformly convex Banach space. Let {xn}∞n=1 and {zn}∞n=1 be sequences in
A and {yn}∞n=1 be a sequence in B satisfying:

(a) limn→∞ ‖xn − yn‖ = dist(A,B)

(b) limn→∞ ‖zn − yn‖ = dist(A,B)

then limn→∞ ‖xn − zn‖ = 0.

Lemma 2. ([22]) Let A be a nonempty closed, convex subset, and B be a nonempty
closed subset of a uniformly convex Banach space. Let {xn}∞n=1 and {zn}∞n=1 be sequences in
A and {yn}∞n=1 be a sequence in B satisfying:

(a) limn→∞ ‖zn − yn‖ = dist(A,B)

(b) for every ε > 0 there is N0 ∈ N, such that for all m > n ≥ N0, ‖xm−yn‖ ≤ dist(A,B)+ε,

then for every ε > 0, there exists N1 ∈ N, such that for all m > n > N1, holds ‖xm− zn‖ ≤ ε.

Cyclic maps, fixed points and best proximity points

Definition 4. ([36]) Let A and B be nonempty subsets of a metric space (X, ρ). The
map T : A

⋃
B → A

⋃
B is called a cyclic map if T (A) ⊆ B and T (B) ⊆ A.

For simplicity of the notations or to fit some of the formulas into the text field, when
no misunderstanding can appear, we will denote dist(A,B) with d.
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Best proximity points of p–cyclic contractions

Definition 5. ([22]) Let A and B be nonempty subsets of a metric space (X, ρ) and
T : A

⋃
B → A

⋃
B be a cyclic map. A point ξ ∈ A is called a best proximity point of the

cyclic map T in A if ρ(ξ, T ξ) = dist(A,B).

Definition 6. ([22]) Let A and B be nonempty subsets of a metric space (X, ρ). The
map T : A

⋃
B → A

⋃
B is called a cyclic contraction map if T is a cyclic map and for some

k ∈ (0, 1) there holds the inequality ρ(Tx, Ty) ≤ kρ(x, y) + (1− k)dist(A,B) for any x ∈ A,
y ∈ B.

The concept of coupled fixed point theorem is introduced in [26].

Definition 7. ([11, 26]) Let A be nonempty subset of a metric space (X, ρ), F : A×A→
A. An ordered pair (x, y) ∈ A×A is said to be a coupled fixed point of F in A if x = F (x, y)
and y = F (y, x).

Definition 8. ([49]) Let A and B be nonempty subsets of X. The ordered pair of maps
(F, f), F : A× A→ B and f : B ×B → A is called an ordered pair of cyclic maps.

The concept of coupled best proximity points theorem is introduced in [49].

Definition 9. ([49]) Let A and B be nonempty subsets of a metric space X, F : A×A→
B. An ordered pair (x, y) ∈ A× A is called a coupled best proximity point of F in A if

ρ(x, F (x, y)) = ρ(y, F (y, x)) = dist(A,B).

It is easy to see that if A = B in Definition 8, then a coupled best proximity point
reduces to a coupled fixed point.

Definition 10. ([27, 49]) Let A and B be nonempty subsets of a metric space X,
F : A×A→ B and G : B×B → A. The ordered pair (F,G) is said to be a cyclic contraction
of type two, if there exist non-negative numbers α, β, such that α+ β < 1 and there holds the
inequality

ρ(F (x, y), G(u, v)) ≤ αρ(x, u) + βρ(y, v) + (1− (α + β))d(A,B)

for all (x, y) ∈ A× A and (u, v) ∈ B ×B.

Definition 11. ([49])Let A,B ⊂ X. Let F : A×A→ B and G : B×B → A. For any
pair (x, y) ∈ A× A we define the sequences {xn}∞n=0 and {yn}∞n=0 by x0 = x, y0 = y and

x2n+1 = F (x2n, y2n), y2n+1 = F (y2n, x2n)
x2n+2 = G(x2n+1, y2n+1), y2n+2 = G(y2n+1, x2n+1)

for all n ≥ 0.

Best proximity points of p–cyclic contractions

A generalization of the notion of best proximity points for p sets is obtained in [33] for
p–cyclic contraction maps and in [32] for p–cyclic Meir–Keeler contraction maps. The ideas
from [32, 33] is developed for p–cyclic maps of Kanan type in [45].

Let {Ai}pi=1 be nonempty subsets of a metric space (X, d). Following [32, 33], a well
known agreement just to simplify the notations is Ap+i = Ai for any i ∈ N. A map T :⋃p
i=1Ai →

⋃p
i=1 Ai is called a p–cyclic map if T (Ai) ⊆ Ai+1 for every i = 1, 2, . . . , p. A point

ξ ∈ Ai is called a best proximity point of T in Ai if d(ξ, T ξ) = dist(Ai, Ai+1), provided that
T be a p–cyclic map.
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INTRODUCTION

Error estimates for fixed points, obtained by a sequence of successive iterations

There are many problems about fixed points and best proximity points that are not
easy to be solved or could not be solved exactly. One of the advantages of Banach fixed point
Theorem is the error estimates of the successive iterations.

That is why an estimation of the error when an iterative process is used is of interest.
An extensive study about approximations of fixed points can be found in [6].

Unfortunately error estimates for best proximity points were missing. Th first result
in this direction is obtained in [52]. The advantage of the presented results [52] is that a
direct stop criteria of the iteration process is presented, when an exact solution is not possible
to be found. The second benefit of the presented technique is that it widens the classes of
equations for which an approximation of the solution can be found with sequences of successive
iterations.

Modular function spaces

Besides the idea of defining a norm and considering a Banach space, another direction
of generalization of the Banach Contraction Principle is based on considering an abstractly
given functional defined on a linear space, which controls the growth of the members of the
space. This functional is usually called modular and it defines a modular space. The theory
of modular spaces was initiated by Nakano [43] in connection with the theory of ordered
spaces, which was further generalized by Musielak and Orlicz [42]. Modular function spaces
are subclass of the modular spaces. The study of the geometry of modular function spaces
was initiated by Kozlowski [38, 39, 40].

Since the theory of modular functional spaces is not as well known as that of metric,
partially ordered metric or Banach spaces, we will try to systematize the basic definitions,
concepts and results for modular functional spaces in more detail. We will follow the survey
paper [41].

Let Ω be a nonempty set and Σ be a nontrivial σ–algebra of subsets of Ω. Let P be a
δ–ring of subsets of Ω, such that E ∩ A ∈ P for any E ∈ P and A ∈ Σ. Let us assume that
there exists an increasing sequence of sets Kn ∈ P , such that Ω = ∪Kn. By E we denote the
linear space of all simple functions with supports from P . By M∞ we will denote the space
of all extended measurable functions, i.e. all functions f : Ω → [−∞,∞] such that there
exists a sequence {gn} ⊂ E , |gn| ≤ |f | and gn(ω)→ f(ω) for all ω ∈ Ω. By 1A we denote the
characteristic function of the set A.

Definition 12. Let ρ : M∞ → [0,∞] be a nontrivial convex and even function. We
say that ρ is a regular convex function pseudo-modular if:

(i) ρ(0) = 0;

(ii) ρ is monotone, i.e., |f(ω)| ≤ |g(ω)| for all ω ∈ Ω implies ρ(f) ≤ ρ(g), where f, g ∈M∞;

(iii) ρ is orthogonaly subadditive, i.e., ρ(f1A∪B) ≤ ρ(f1A) + ρ(f1B), where A,B ∈ Σ such
that A ∩B 6= ∅, f ∈M∞;

(iv) ρ has the Fatou property, i.e., |fn(ω)| ↑ |f(ω)| for all ω ∈ Ω implies ρ(fn) ↑ ρ(f), where
f ∈M∞;

9



Modular function spaces

(v) ρ is order continuous in E, i.e., gn ∈ E and |gn(ω)| ↓ 0 implies ρ(gn) ↓ 0.

Similarly as in the case of measure spaces, we say that a set A ∈ Σ is ρ–null if ρ(g1A) = 0
for every g ∈ E . We say that a property holds ρ–almost everywhere, if the exceptional set is
ρ–null. As usual we identify any pair of measurable sets, whose symmetric difference is ρ–null
as well as any pair of measurable functions differing only on a ρ–null set. With this in mind
we define M(Ω, σ,P , ρ) = {f ∈ M∞; |f(ω)| < ∞ρ − a.e.}, where each f ∈ M(Ω, σ,P , ρ)
is actually an equivalence class of functions equal ρ a.e. rather than an individual function.
Where no confusion exists we will write M instead of M(Ω, σ,P , ρ).

Definition 13. Let ρ be a regular convex function pseudo-modular.

(1) We say that ρ(0) is a regular convex function semi-modular if ρ(αf) = 0 for every α > 0
implies f = 0 ρ–a.e.;

(2) We say that ρ is a regular convex function modular if ρ(f) = 0 implies f = 0 ρ–a.e.

The class of all nonzero regular convex function modular defined on Ω will be denoted
by R.

Let us denote ρ(f, E) = ρ(f1E) for f ∈M, E ∈ Σ. It is easy to prove that ρ(f, E) is a
function pseudo-modular in the sense of Definition 12 [38].

Definition 14. Let ρ be a convex function modular.

(a) A modular function space is the vector space Lρ(Ω,Σ), or briefly Lρ, defined by

Lρ = {f ∈M : ρ(λf)→ 0 as λ→ 0}

(b) The following formula defines a norm in Lρ (frequently called Luxemburg norm):

‖f‖ρ = inf

ß
α > 0 : ρ

Å
f

α

ã
≤ 1

™
.

In the present study, when we formulate something in terms of a norm in a modular
functional space, we will understand the Luxembourg norm ‖ · ‖ρ, generated by ρ.

In this way, Lebesgue, Orlicz, Musielak–Orlicz spaces are examples of modular function
spaces.

Geometry of modular function spaces

Generalization of convexity properties for Banach spaces are investigated for modular
function spaces in [35]. As demonstrated in [41], one concept of uniform convexity for Banach
spaces generates several different types of uniform convexity in modular function spaces. This
is due primarily to the fact that in general the modular function is not homogeneous.

Definition 15. Let ρ ∈ R and i ∈ {1, 2}. Let r > 0, ε > 0. Define

Di(r, ε) = {(f, g) : f, g ∈ Lρ, ρ(f) ≤ r, ρ(g) ≤ r, ρ

Å
f − g
i

ã
≥ εr}.

Let δi(r, ε) = inf
{

1− 1
r
ρ
(
f+g

2

)
: (f, g) ∈ Di(r, ε)

}
> 0 if Di(r, ε) 6= ∅ and δi(r, ε) = 1 if

Di(r, ε) = ∅.
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INTRODUCTION

(i) We say that ρ satisfies (UCi) if for any r > 0, ε > 0 there holds the inequality δi(r, s) > 0.

(ii) We say that ρ satisfies (UUCi) if for every s ≥ 0, ε > 0 there exists ηi(s, ε) > 0,
depending on s and ε such that δi(r, s) > ηi(s, ε) > 0 for r > s.

If ρ is (UC1) we obtain that the inequality ρ
(
x+y

2

)
≤ r (1− δ1(r, ε)) holds for every

ρ(x), ρ(y) ≤ r and ρ (x− y) ≥ rε.

Proposition 1. The following conditions characterize relationship between the notions,
that are defined in Definition 15

(1) (UUCi) implies (UCi) for i ∈ 1, 2;

(2) δ1(r, ε) ≤ δ2(r, ε);

(3) (UC1) implies (UC2);

(4) (UUC1) implies (UUC2);

(5) If ρ ∈ R, then (UUC1) and (UUC2) are equivalent;

(6) If ρ is homogeneous (e.g. is a norm) then all conditions (UC1), (UC2), (UUC1) and
(UUC2) are equivalent.

Orlicz function spaces

We recall that M is called an Orlicz function, provided M is even, convex, continuous
non-decreasing in [0,∞) function with M(0) = 0, M(t) > 0 for any t 6= 0. Let M be an Orlicz
function and let (Ω,Σ, µ) be a measure space. Let us consider the space L0(Ω) consisting of
all measurable real–valued functions on Ω and define for every f ∈ L0(Ω) the Orlicz function

modular M̃(f) =
∫

Ω
M(f(t))dµ(t).

Definition 16. The Orlicz space LM(Ω,Σ, µ) is the space of all classes of equivalent

µ–measurable functions f : Ω→ R over the measure space (Ω,Σ, µ) such that M̃(λf)→ 0 as

λ→ 0 or equivalently M̃
(
f
λ

)
<∞ for some λ > 0.

The function M̃ is a regular convex function modular and it is called Orlicz function
modular.

We say that M satisfies the ∆2–condition if there exist constants C, t0 > 0, such that
M(2t) ≤ CM(t) for any t ≥ t0. It is easy to observe that if M satisfies the ∆2–condition,

then the Orlicz function modular M̃ has the ∆2 property.
If we restrict to the Orlicz space LM(0, 1), then the Orlicz function modular is defined

by M̃(f) =

∫ 1

0

M(f(s))dµ(s). We will denote the corresponding modular function space by

LM̃(0, 1). When M = |t|p we will denote LM̃(0, 1) by Lp̃(0, 1).

Definition 17. ([34], p. 81) A function ϕ is said to be very convex if for any ε > 0
and any u0 there exists δ > 0 such that ϕ

(
u−v

2

)
≥ ε

2
(ϕ(u)+ϕ(v)) ≥ εϕ(u0) implies ϕ

(
u−v

2

)
≤

1−δ
2

(ϕ(u) + ϕ(v)).
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Fixed points for multi–valued maps

Definition 18. [31] A function ϕ is said to be uniformly convex on whole R if for any

a ∈ (0, 1) there exists δ(a) ∈ (0, 1) such that ϕ
(
u+au

2

)
≤ (1− δ(a))ϕ(u)+ϕ(au))

2
.

If ϕ is uniformly convex then ϕ is very convex [35]. Examples of uniformly convex Orlicz
functions are M(t) = |t|p, p > 1.

The uniform convexity of the Orlicz function implies (UC1) [31]. It is known [35, 41]

that for Orlicz spaces over a finite, atom-less measure space the Orlicz modular M̃ is (UC2)
if and only if M is very convex.

It can be proved ([34], p. 116) that in Orlicz spaces over a finite atom-less measure the
uniform continuity of the Orlicz function modular is equivalent to the ∆2–condition.

Fixed points for multi–valued maps

Following the ”Banach Contraction Principle“, Nadler introduced the concept of multi–
valued contractions [30]. Let Y be a set. We denote by 2Y the set of all subsets of Y . Let X
and Y be sets. A map f : X → 2Y is called a multi–valued map, i.e. the map f associates
with any x ∈ X a subset f(x) of Y . The set f(x) ⊆ Y is called an image of x under f . We
will denote the set valued maps by f : X ⇒ Y .

Definition 19. ([30]) A point x ∈ X is said to be a fixed point of the multi–valued
mapping F : X ⇒ X if x ∈ F (x).

Definition 20. ([48]) A point (x; y) ∈ X ×X is said to be a coupled fixed point of the
multi–valued mapping F : X ×X ⇒ X if x ∈ F (x, y) and y ∈ F (y, x).

Tripled fixed points and tripled best proximity points

A lot of results in modeling real world processes in applied mathematics lead to the
problems, where T depends on more than two variables, e.g. T : X × X × X → X. The
theory of tripled fixed points and tripled best proximity points [2, 9, 47] is a generalization of
coupled fixed points introduced in [11]. This idea have been further generalized for quadrupled
fixed points [44] ans n–order (n–tuple) fixed points [47].

Following [4, 9, 12] we will give one possible definition for a tripled fixed point.

Definition 21. ([9]) An element (x, y, z) ∈ X ×X ×X is called a tripled fixed point of
F : X ×X ×X → X if there hold x = F (x, y, z), y = F (y, x, y) and z = F (z, y, x).

The notion of maps with the mixed monotone property is generalized for maps of three
variables F : X ×X ×X → X in [9].

Definition 22. ([9]) Let (X,�) be a partially ordered set and F : X × X × X → X.
We say that F has the mixed monotone property if F (x, y, z) is monotone non-decreasing in
x and z, and is monotone non-increasing in y, that is for any x, y, z ∈ X,

for x1, x2 ∈ X, x1 � x2 there holds F (x1, y, z) � F (x2, y, z),

for y1, y2 ∈ X, y1 � y2 there holds F (x, y1, z) � F (x, y22, z)

and
for z1, z2 ∈ X, z1 � z2 there holds F (x, y, z1) � F (x, y, z2).

12



Introduction

It is proposed in [47] a different approach in generalizing of coupled fixed points.

Definition 23. ([47]) Let X be a non-empty set and F : XN → X be a given mapping,
(N ≥ 2). An element (x1, x2, . . . , xN) ∈ XN is said to be a fixed point of N–order of the
mapping F if

F (x1, x2, . . . , xN) = x1,
F (x2, x3, . . . , xN , x1) = x2,

. . . . . . . . .
F (xN , x1, . . . , xN−1) = xN .

Definition 24. ([47]) Let (X, ρ) be a metric space and F : XN → X be a given
mapping. Let M be a non-empty subset of X2N . We say that M is F–invariant subset of
X2N if for all x1, x2, . . . , x2N ∈ X, we have

(x1, x2, . . . , x2N) ∈M if and only if


(x2, x3, . . . , x2N , x1) ∈ M

(x3, x4, . . . , x2N , x1, x2) ∈ M
. . . . . . . . .

(x2N , x1, . . . , x2N−1) ∈ M

and (F (x1, x2, . . . , xN), . . . , F (xN , x1, . . . , xN−1), F (xN+1, xN+2, . . . , x2N), . . . ,
F (x2N , xN+1, . . . , x2N−1)) ∈M , provided that (x1, x2, . . . , x2N) ∈M .

We see that Definition 24 actually replaces the partial order.

Oligopoly markets

Let’s agree that market participants are divided into two types. These are the ones who
want to sell their product and we will call them producers (manufacturer) or firms (companies)
and those who buy the product we will call them buyers or consumers. We assume that shops,
resellers, exchanges are intermediate in the sale of a product from producer to consumer.

Let’s first look at the duopoly market [24, 50], where two companies compete for the
same customers and strive to meet market demand with total output of Z = x + y, where x
and y are the production quantities of producers one and two, respectively. The market price
is set as P (Z) = P (x+y), which is the inverse of the demand function. Let each manufacturer
have a cost function of c1(x) and c2(y), respectively. We assume that both participants have
rational behavior. The payoff functions for both participants are respectively Π1(x, y) =
xP (x + y) − c1(x) and Π2(x, y) = yP (x + y) − c2(y). Due to the assumption of rational
behavior of producers and the fact that everyone accepts the quantities of goods produced
by their competitor as fixed, the maximization of the payoff of each of the participants can
be recorded in the form max{Π1(x, y) : x, assuming that y is fixed} and max{Π2(x, y) :
y, assuming that x is fixed}.

Provided that functions P and ci, i = 1, 2 are differentiable, we get the equations

(1)

∣∣∣∣∣ ∂Π1(x,y)
∂x

= P (x+ y) + xP ′(x+ y)− c′1(x) = 0
∂Π2(x,y)

∂y
= P (x+ y) + yP ′(x+ y)− c′2(y) = 0.

13



COUPLED FIXED POINTS IN PARTIALLY ORDERED METRIC SPACES

The solution of (1) presents the equilibrium pair of production in the duopoly market,
provided that second order conditions are satisfied [24, 50]. The second order conditions are

(2)

∣∣∣∣∣ ∂2Π1(x,y)
∂x2

< 0
∂2Π2(x,y)

∂y2
< 0.

Chapter I
COUPLED FIXED POINTS IN PARTIALLY ORDERED METRIC SPACES

We will present some possible generalizations of known results [11, 26] about coupled
fixed points in partially ordered complete metric spaces. We will start first with a general-
ization of Ekeland’s variational principle, which generalization we will apply in the proofs of
the results about existence of coupled fixed points in partially ordered metric spaces for maps
with the mixed monotone property.

A generalization of Ekeland’s variational principle for maps with the mixed mono-
tone property

Just to fit some of the formulas in the text field we will use in this chapter the following
notation u =

(
u(2), u(1)

)
for u =

(
u(1), u(2)

)
∈ X ×X, where u ∈ X ×X. .

Theorem 1. Let (X, ρ,�) be a partially ordered complete metric space, (X ×X, d,�)
and F : X ×X → X be a continuous map with the mixed monotone property. Let

V × V = {x = (x(1), x(2)) ∈ X ×X : x(1) � F (x) and x(2) � F (x)} 6= ∅.

Let T : X × X → R ∪ {+∞} be a proper, l.s.c, bounded from below function. Let ε > 0 be
arbitrary and let u0 ∈ V ×V be an ordered pair such that the inequality T (u0) ≤ infV×V T (v)+ε
holds. Then there exists an ordered pair x ∈ V × V , such that

(i) T (x) ≤ T (u0);

(ii) d(x, u0) ≤ 1;

(iii) For every w ∈ V × V different from x ∈ V × V holds the inequality

T (w) > T (x)− εd(w, x).

Coupled fixed points results for maps with the mixed monotone property obtained
with the help of a variational technique

Let (X,�) be a partially ordered set and F : X × X → X. Following [26], for any
(ξ0, η0) ∈ X×X we will consider the sequence {ξn, ηn}∞n=0, defined by ξn = F (ξn−1, ηn−1) and
ηn = F (ηn−1, ξn−1) for n ∈ N.

We will give an alternative proof of ([7], Theorem 3) for the existence of coupled fixed
points using the variational principle from the previous section.

14
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Theorem 2. Let (X, ρ,�) be a partially ordered complete metric space, (X ×X, d,�)
and F : X×X → X be a continuous map with the mixed monotone property. Let there exists
α ∈ [0, 1), so that the inequality

ρ(F (x, y), F (u, v)) + ρ(F (y, x), F (v, u)) ≤ αρ(x, u) + αρ(y, v)

holds for all x � u and y � v. If there exists at least one ordered pair (x, y), such that
x � F (x, y) and y � F (y, x), then there exists a coupled fixed points (x, y) of F .

If in addition every pair of elements in X × X has an lower or an upper bound, then
the coupled fixed point is unique.

Theorem 2 slightly generalizes the result from [11].
It was proved in [14] the existence and uniqueness of coupled fixed points for Kannan

type maps in metric space. We present a generalization in the context of mixed monotone
maps in partially ordered metric spaces.

Theorem 3. Let (X, ρ,�) be a partially ordered complete metric space, (X ×X, d,�)
and F : X×X → X be a continuous map with the mixed monotone property. Let there exists
α ∈ [0, 1/2), so that the inequality

ρ(F (x, y), F (u, v)) ≤ αρ(x, F (x, y)) + αρ(u, F (u, v))

holds for all x � u and y � v. If there exists at least one ordered pair (x, y), such that
x � F (x, y) and y � F (y, x), then there exists a coupled fixed point (x, y) of F .

If in addition every pair of elements in X × X has an lower or an upper bound, then
the coupled fixed point is unique.

Example 1. Let X = `1, endowed with its classical norm ‖x‖1 =
∑∞

i=1 |xi| and the
metric ρ1(x, y) = ‖x − y‖. Let us define a partial order in X by x � y, if |xi| ≤ |yi| for all

i ∈ N. Let us define F : X ×X → X by F (x, y) =
¶
|xi|
2
− |yi|

3
+ 1

2i

©∞
i=1

.

The map F satisfies the conditions of Theorem 3 and consequently F has a coupled
fixed point.

It is easy to observe that for any two elements x, y ∈ (X, ρ1,�) there exists an element
z, which is comparable with both of them (we can choose zi ≥ max{|xi|, |yi|}). Thus the
coupled fixed point is unique.

Coupled fixed points results for Chatterjea type of maps with the mixed monotone
property obtained with the help of a variational technique

Theorem 4. Let (X, ρ,�) be a partially ordered complete metric space, (X ×X, d,�)
and F : X×X → X be a continuous map with the mixed monotone property. Let there exists
α ∈ [0, 1/2), so that the inequality

ρ(F (x, y), F (u, v)) ≤ αρ(x, F (u, v)) + αρ(u, F (x, y))

holds for all x � u and y � v. If there exists at least one ordered pair (x, y), such that
x � F (x, y) and y � F (y, x), then there exists a coupled fixed point (x, y) of F .

If in addition every pair of elements in X × X has an lower or an upper bound, then
the coupled fixed point is unique.
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Coupled fixed points results for Hardy–Rogers type of maps with the mixed monotone property
obtained with the help of a variational technique

Coupled fixed points results for Hardy–Rogers type of maps with the mixed
monotone property obtained with the help of a variational technique

Theorem 5. Let (X, ρ,�) be a partially ordered complete metric space, (X ×X, d,�)
and F : X×X → X be a continuous map with the mixed monotone property. Let there exists
α + β + γ ∈ [0, 1/2), so that the inequality

ρ(F (x, y), F (u, v)) ≤ α(ρ(x, u) + ρ(y, v)) + β(ρ(x, F (x, y) + ρ(u, F (u, v))
+γ(ρ(x, F (u, v)) + γρ(u, F (x, y)).

holds for all x � u and y � v. If there exists at least one ordered pair (x, y), such that
x � F (x, y) and y � F (y, x), then there exists a coupled fixed point (x, y) of F .

If in addition every pair of elements in X × X has an lower or an upper bound, then
the coupled fixed point is unique.

If we take β = γ = 0 in Theorem 5 we get Theorem 2. If we take α = γ = 0 in Theorem
5 we get Theorem 3. If we take α = β = 0 in Theorem 5 we get Theorem 4.

Chapter II
ERROR ESTIMATES FOR COUPLED BEST PROXIMITY POINTS

One of the advantage of Banach fixed point Theorem is the error estimates of the
successive iterations and the rate of convergence.

One kind of a generalization of the Banach Contraction Principle is the notation of
cyclical maps [36], i.e. T (A) ⊆ B and T (B) ⊆ A. Because a non-self mapping T : A → B
does not necessarily have a fixed point, one often attempts to find an element x which is
in some sense closest to Tx, i.e. we try to solve the problem min{ρ(x, Tx) : x ∈ A}. Best
proximity point theorems are relevant in this perspective. The notation of best proximity
point is introduced in [22].

In contrast with all the results about fixed points for self maps and cyclic maps, where
”a priori error estimates“ and ”a posteriori error estimates“ are obtained there were no such
results about best proximity points.

We have obtained ”a priori error estimates“ and ”a posteriori error estimates“ in [52]
for the cyclic contractions, investigated in [22].

On the technique of obtaining error estimates of best proximity points

The technique of the next results from [52] will be used in the sequel for obtaining of
error estimates of the coupled best proximity points for different kind of maps.

Theorem 6. Let A and B be nonempty, closed and convex subsets of a uniformly convex
Banach (X, ‖ · ‖) space, such that d = dist(A,B) > 0, and let there exist C > 0 and q ≥ 2,
such that δ‖·‖(ε) ≥ Cεq. Let T : A ∪ B → A ∪ B be a cyclic contraction map and T satisfies
the inequality ρ(Tx, Ty) ≤ kρ(x, y) + (1 − k)dist(A,B) for any x ∈ A, y ∈ B and for some
k ∈ (0, 1). Then

(i) there exists a unique best proximity point ξ of T in A, Tξ is a unique best proximity
point of T in B and ξ = T 2ξ = T 2nξ;
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Chapter II

(ii) for any x0 ∈ A the sequence {x2n}∞n=1 converges to ξ and {x2n+1}∞n=1 converges to Tξ,
where xn+1 = Txn, n = 0, 1, 2, . . . ;

(iii) a priori error estimate holds ‖ξ − T 2nx‖ ≤ ‖x−Tx‖
1− q√

k2
q

»
‖x−Tx‖−d

Cd

Ä
q
√
k
ä2n

(iv) a posteriori error estimate holds ‖T 2nx− ξ‖ ≤ ‖T 2n−1x−T 2nx‖
1− q√

k2
q

»
‖T 2n−1x−T 2nx‖−d

Cd

q
√
k.

Error estimates for coupled fixed points and coupled best proximity points of
cyclic contraction maps

The main result about coupled best proximity points from [27, 49], applied in uniformly
convex Banach space is summarized in the next theorem, which one enriches the results from
[27, 49].

Theorem 7. Let A and B be nonempty closed and convex subsets of a uniformly convex
Banach space (X, ‖ · ‖). Let F : A× A→ B, G : B × B → A and the ordered pair (F,G) be
such that there are non–negative numbers α, β, so that α+β < 1 and there holds the inequality

ρ(F (x, y), G(u, v)) ≤ αρ(x, u) + βρ(y, v) + (1− (α + β))dist(A,B)

for all (x, y) ∈ A × A and (u, v) ∈ B × B. Then F has a unique coupled best proximity
point (ξ, η) ∈ A × A and G has a unique coupled best proximity point (ζ, ς) ∈ B × B, (i.e.
‖ξ − F (ξ, η)‖ = ‖η − F (η, ξ)‖ = d and ‖ζ − G(ζ, ς)‖ = ‖ς − G(ς, ζ)‖ = d). Moreover there
hold

G(F (ξ, η), F (η, ξ)) = ξ, G(F (η, ξ), F (ξ, η)) = η,
F (G(ζ, ς), G(ς, ζ)) = ζ, F (G(ς, ζ), F (ζ, ς)) = ς

and
ζ = F (ξ, η), ς = F (η, ξ), ξ = G(ζ, ς), η = G(ς, ζ).

For any arbitrary point (x0, y0) there hold lim
n→∞

x2n = ξ, lim
n→∞

y2n = η, lim
n→∞

x2n+1 = ζ,

lim
n→∞

y2n+1 = ς and ‖ξ − ζ‖+ ‖η − ς‖ = 2d.

Error estimates for coupled best proximity points for cyclic contraction maps

Theorem 8. Let A and B be nonempty closed and convex subsets of a uniformly convex
Banach space with modulus of convexity of power type with constants C > 0 and q > 1. Let
F : A×A→ B, G : B×B → A and the ordered pair (F,G) be such that there are non–negative
numbers α, β, so that α + β < 1 and there holds the inequality

(3) ρ(F (x, y), G(u, v)) ≤ αρ(x, u) + βρ(y, v) + (1− (α + β))dist(A,B)

for all (x, y) ∈ A× A and (u, v) ∈ B ×B. Then

(i) F has a unique coupled best proximity point (ξ, η) ∈ A×A and G has a unique coupled
best proximity point (ζ, ς) ∈ B × B, (i.e. ‖ξ − F (ξ, η)‖ = ‖η − F (η, ξ)‖ = d and
‖ζ −G(ζ, ς)‖ = ‖ς −G(ς, ζ)‖ = d). Moreover ζ = F (ξ, η), ς = F (η, ξ), ξ = G(ζ, ς) and
η = G(ς, ζ). For any arbitrary point (x0, y0) there hold limn→∞ x2n = ξ, limn→∞ y2n = η,
limn→∞ x2n+1 = ζ, limn→∞ y2n+1 = ς and ‖ξ − ζ‖+ ‖η − ς‖ = 2d;
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Error estimates for coupled fixed (or best proximity) points of cyclic contraction maps

(ii) a priori error estimates hold

max {‖ξ − x2m‖ , ‖η − y2m‖} ≤ P0,1(x, y)
q

 
W0,1(x, y)

Cd
·

Ä
q
√

(α + β)2
äm

1− q
√

(α + β)2

(iii) a posteriori error estimates hold

max {‖ξ − x2n‖ , ‖η − y2n‖} ≤ P2n,2n−1(x, y)
q

 
W2n,2n−1(x, y)

Cd
·

q
√
α + β

1− q
√

(α + β)2
,

where {xn}∞n=0 and {yn}∞n=0 are the sequences defined in Definition 11.

Error estimates for coupled fixed points for cyclic contraction maps

It is proved in [27, 49] that if d = 0 then there exists a unique common coupled fixed
point for F and G. We extend the results from [27, 49] by dropping the assumption d = 0.

Theorem 9. Let A and B be nonempty closed subsets of a complete metric space (X, ρ)
and F : A× A→ B and G : B ×B → A. Let there exist α, β > 0, α + β < 1, such that

ρ(F (x, y), G(u, v)) ≤ αρ(x, u) + βρ(y, v)

for all x, y ∈ A and u, v ∈ B. Then

(i) there exists a unique pair (ξ, η) in A∩B, which is a common coupled fixed point for the
maps F and G and moreover the iteration sequences {xn}∞n=0 and {yn}∞n=0, defined in
Definition 11 converge to ξ and η respectively

(ii) a priori error estimates hold max {ρ(xn, ξ), ρ(yn, η)} ≤ (α+β)n

1−α−β (ρ(x1, x0) + ρ(y1, y0))

(iii) a posteriori error estimates hold

max {ρ(xn, ξ), ρ(yn, η)} ≤ α + β

1− (α + β)
(ρ(xn−1, xn) + ρ(yn−1, yn))

(iv) the rate of convergence for the sequences of successive iterations is given by

ρ(xn, ξ) + ρ(yn, η) ≤ (α + β) (ρ(xn−1, ξ) + (yn−1, η)) .

If the functions F and G depend only on its first variable and β = 0 we get that the
pair (F,G) is a cyclic contraction in the sense of [22, 36], i.e. Tx = F (x, y) : A → B and
Tu = G(u, v) : B → A. The results from [22, 52] are corollaries of Theorem 8 and the ones
from [36, 46] are corollaries from Theorem 9.
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Application of Theorem 8 in solving of systems of integral equations

We will illustrate Theorem 8 with some examples.

Example 2. Let us consider the space L2[0, 1] of all measurable functions with an inte-

grable square, endowed with the canonical norm ‖f‖2 =
»∫ 1

0
f 2(t)dt. Let A = {f ∈ L2[0, 1] :

f(t) ≥ t for all t ∈ [0, 1]}. Let us search for the solutions of the system

(4)

∣∣∣∣∣∣∣∣∣∣

∫ 1

0

Ç
x(t) +

3t

2

∫ 1

0

s
x(s) + y(s)

2
ds+

t

2

å2

dt = 4
3∫ 1

0

Ç
y(t) +

3t

2

∫ 1

0

s
x(s) + y(s)

2
ds+

t

2

å2

dt = 4
3
,

which belong to the set A.

Let us denote B = {f ∈ L2[0, 1] : f(t) ≤ −t for all t ∈ [0, 1]}. It is easy to observe

that d = ρ(A,B) = 2√
3
. Let F (x, y) = −

Ä
3t
2

∫ 1

0
sx(s)+y(s)

2
ds+ t

2

ä
for any (x, y) ∈ A × A and

G(u, v) = 3t
2

∫ 1

0
s |u(s)|+|v(s)|

2
ds+ t

2
for any (u, v) ∈ B×B. The pair (ξ, η) ∈ A×A is a solution

of (4) if and only if (ξ, η) is a coupled best proximity points (ξ, η) of F in A× A.

Table 1. Number 2m of iterations needed by the a posteriori estimate

ε 0.1 0.01 0.001 0.0001 0.00001 0.000001
2m 15 21 28 34 41 47

Application of Theorem 8 in solving of particular systems of linear equations

The examples that we will consider are from [27, 49] and are in the space (R, | · |).
Let us point out that the modulus of convexity δ‖·‖ is considered if the Banach space

is at least two dimensional. As far as R, endowed with its canonical norm is a subspace of
R2

2 we get that δ(R,|·|)(ε) ≥ δ(R2
2,‖·‖2)(ε) = ε2

8
. It is easy to observe that in R there holds the

equality δ(R,|·|)(ε) = ε
2
. Indeed B(R,|·|) = [−1, 1]. Then

δ(R,|·|)(ε) = inf

ß∣∣∣∣1− x+ y

2

∣∣∣∣ : x, y ∈ [−1, 1], |x− y| ≥ ε

™
.

The infimum is attained, when x = 1 and y = 1− ε. Therefore δ(R,|·|)(ε) =
∣∣∣1− 1+(1−ε)

2

∣∣∣ = ε
2
.

Example 3. ([49]) Let us consider the space R, endowed with the canonical norm | · |
and A = [1, 2]. We search for the solutions of the system∣∣∣∣ 5x+ y = 6

5y + x = 6,

which belong to the set A.
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Modified coupled fixed points and coupled best proximity points

Let us denote B = [−2,−1]. Let F : A × A → B and G : B × B → A be defined by
F (x, y) = −x−y−2

4
and G(x, y) = −x−y+2

4
. The ordered pair (F,G) satisfies the conditions of

Theorem 8 with α = β = 1/4 and d = d(A,B) = 2 [49]. The couple (1, 1) is a unique couple
of best proximity points of F in A.

Table 2. Number 2m of iterations needed by the a priori estimate

ε 0.1 0.01 0.001 0.0001 0.00001 0.000001
2m 8 12 16 18 22 26

Table 3. Number 2m of iterations needed by the a posteriori estimat

ε 0.1 0.01 0.001 0.0001 0.00001 0.000001
2m 16 36 66 120 172 232

Modified coupled fixed points and coupled best proximity points

Deep results in the theory of coupled fixed points can be found for example in [7, 8, 9, 10].
We have tried to enrich the known results about coupled best proximity points for order
pairs of cyclic contraction maps (F,G), by proving that the coupled best proximity points
(x, y) ∈ A×A reduce to the point (x, x) ∈ A×A. This result shows why the application made
in [28] is valid only for symmetric linear systems and cannot be extended to an application
for solving arbitrary linear systems.

In order to get a general result for the existence of coupled best proximity points
(x, y) ∈ A × A with x 6= y, we needed to consider an ordered pair of an order pair of
maps ((F, f), (G, g)), such that F : A1 × A2 → B1, f : A1 × A2 → B2, G : B1 × B2 → A1,
g : B1 ×B2 → A2, where A1, A2, B1, B2 ⊂ X.

Just to fit some of the formulas in the text field let us denote dx = disr(Ax, Bx) and
dy = dist(Ay, By).

Definition 25. Let Ax, Ay, Bx and By be nonempty subsets of a metric space (X, ρ),
F : Ax×Ay → Bx, f : Ax×Ay → By, G : Bx×By → Ax and g : Bx×By → Ay. The ordered
pair of orderer pairs ((F, f), (G, g)) is said to be a cyclic contraction ordered pair if there exist
non-negative numbers α, β, γ, δ, satisfying max{α + γ, β + δ} < 1 and the inequality

S1 = ρ(F (x, y), G(u, v)) + ρ(f(z, w), g(t, s))
≤ αρ(x, u) + βρ(y, v) + γρ(z, t) + δρ(w, s) + (1− (α + γ))dx + (1− (β + δ))dy

for all (x, y), (z, w) ∈ Ax × Ay and (u, v), (t, s) ∈ Bx ×By.

Definition 26. Let Ax, Ay, Bx and By be nonempty subsets of a metric space (X, ρ),
F : Ax × Ay → Bx, f : Ax × Ay → By. An ordered pair (ξ, η) ∈ Ax × Ay is called a coupled
best proximity point of (F, f) in Ax × Ay if ρ(ξ, F (ξ, η)) = dist(Ax, Bx) and ρ(η, f(ξ, η)) =
dist(Ay, By).
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Definition 27. Let Ax, Ay, Bx and By be nonempty subsets of X. Let F : Ax ×Ay →
Bx, f : Ax×Ay → By, G : Bx×By → Ax and g : Bx×By → Ay. For any pair (x, y) ∈ Ax×Ay
we define the sequences {xn}∞n=0 and {yn}∞n=0 by x0 = x, y0 = y and

x2n+1 = F (x2n, y2n), y2n+1 = f(x2n, y2n)
x2n+2 = G(x2n+1, y2n+1), y2n+2 = g(x2n+1, y2n+1)

for all n ≥ 0.

Everywhere in this subsection, when considering the sequences {xn}∞n=0 and {yn}∞n=0 we
will assume that they are the sequences defined in Definition 27.

If we put Ax = Ay = A, Bx = By = B, D = d(A,B), f(x, y) = F (y, x), g(x, y) =
G(y, x), z = y, w = x, t = v, s = u, γ = β and δ = α in Definition 25, then we get the maps,
investigated in [27, 49].

Comments on the known results about coupled best proximity points

It is interesting to see that in the examples from [27, 49] there holds ξ = η. It turns out
that this is not just a coincidence.

Theorem 10. Let there hold the assumptions of Theorem 7. Then F has a unique
coupled best proximity point (ξ, η) ∈ A × A and ξ = η and G has a unique coupled best
proximity point (ζ, ς) ∈ B ×B.

The next result enriches the results from [29] by proving that the coupled fixed point
(ξ, η) in A ∩B satisfies ξ = η.

Theorem 11. Let A and B be nonempty closed subsets of a complete metric space
(X, ρ) and F : A × A → B and G : B × B → A. Let there exist α, β > 0, α + β < 1,
such that ρ(F (x, y), G(u, v)) ≤ αρ(x, u) + βρ(y, v) for all x, y ∈ A and u, v ∈ B. Then there
exists a unique pair (ξ, η) in A ∩ B, which is a common coupled fixed point for the maps F
and G. Moreover the iteration sequences {xn}∞n=0 and {yn}∞n=0 for any arbitrary initial guess
(x, y) ∈ A×A, defined in Definition 11 converge to ξ and η respectively and moreover ξ = η.

Modified coupled fixed points

Theorem 12. Let Ax, Ay, Bx and By be nonempty subsets of a complete metric space
(X, ρ), F : Ax ×Ay → Bx, f : Ax ×Ay → By, G : Bx ×By → Ax and g : Bx ×By → Ay. Let
there exist α, β, γ, δ > 0, max{α + γ, β + δ} < 1, such that

ρ(F (x, y), G(u, v)) + ρ(f(z, w), g(t, s)) ≤ αρ(x, u) + βρ(y, v) + γρ(z, t) + δρ(w, s)

for all (x, y) ∈ Ax × Ay, (u, v) ∈ Bx ×By, (z, w) ∈ Ax × Ay and (t, s) ∈ Bx ×By. Then

(i) there exists a unique pair (ξ, η) in A∩B, which is a common coupled fixed point for the
maps F and G and the iteration sequences {xn}∞n=0 and {yn}∞n=0, defined in Definition
27 converge to ξ and η respectively.

(ii) a priori error estimates hold max {ρ(xn, ξ), ρ(yn, η)} ≤ kn

1−k (ρ(x1, x0) + ρ(y1, y0))
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(iii) a posteriori error estimates hold max {ρ(xn, ξ), ρ(yn, η)} ≤ k
1−k (ρ(xn−1, xn)+ρ(yn−1, yn))

(iv) the rate of convergence for the sequences of successive iterations is given by

ρ(xn, ξ) + ρ(yn, η) ≤ k (ρ(xn−1, ξ) + (yn−1, η)) .

Modified coupled best proximity points

Just to fit some of the formulas in the text field we will use the notations. Let Ax, Ay,
Bx and By be nonempty subsets of a metric space (X, ρ). Let us denote dx = dist(Ax, Bx),
dy = dist(Ay, By), d = dx + dy, Pn,m(x, y) = ‖xn − xm‖ + ‖yn − ym‖ and Wn,m(x, y) =
Pn,m(x, y)− (dx + dy) = ‖xn − xm‖ + ‖yn − ym‖ − (dx + dy), where {xn}∞n=0 and {yn}∞n=0 be
the sequences defined in Definition 27 and k = max{α + γ, β + δ}, where α, β, γ, δ are the
constants from Definition 25.

Theorem 13. Let Ax, Ay, Bx and By be nonempty convex subsets of a uniformly convex
Banach space (X, ‖ · ‖), F : Ax × Ay → Bx, f : Ax × Ay → By, G : Bx × By → Ax and
g : Bx × By → Ay. Let the ordered pair ((F, f), (G, g)) be a cyclic contraction. Then (F, f)
has a unique coupled best proximity point (ξ, η) ∈ Ax × Ay and (G, g) has a unique coupled
best proximity point (ζ, ς) ∈ Bx × By, (i.e. ‖ξ − F (ξ, η)‖ = dx, ‖η − f(ξ, η)‖ = dy and
‖ζ − G(ζ, ς)‖ = dx, ‖ς − g(ζ, ς)‖ = dy). Moreover ζ = F (ξ, η), ς = f(ξ, η), ξ = G(ζ, ς) and
η = g(ζ, ς). For any arbitrary point (x, y) ∈ A×A there hold limn→∞ x2n = ξ, limn→∞ y2n = η,
limn→∞ x2n+1 = ζ, limn→∞ y2n+1 = ς and ‖ξ − ζ‖+ ‖η − ς‖ = dx + dy. Moreover there hold

G(F (ξ, η), f(ξ, η)) = ξ, g(F (ξ, η), f(ξ, η)) = η,
F (G(ζ, ς), g(ζ, ς)) = ζ, f(G(ζ, ς), g(ζ, ς)) = ς.

If in addition (X, ‖ · ‖) has a modulus of convexity of power type with constants C > 0
and q > 1, then

(i) a priori error estimates hold

max {‖ξ − x2m‖ , ‖η − y2m‖} ≤ P0,1(x, y) q

 
W0,1(x, y)

Cdx
·

q
√
k2m

1− q
√
k2

(ii) a posteriori error estimates hold

max {‖ξ − x2n‖ , ‖η − y2n‖} ≤ P2n,2n−1(x, y) q

 
W2n,2n−1(x, y)

Cdx
·

q
√
k

1− q
√
k2

Applications of Theorem 13 for solving of systems of transcendent equations

If put Ax = Ay = A, Bx = By = B, f(x, y) = F (y, x), g(x, y) = G(y, x), z = y, w = x,
t = v, s = u, γ = β and δ = α, then we get the results from ([29], Theorem 2 and Theorem
3) as corollaries of Theorem 13 and Theorem 12.

We will illustrate Theorem 13 by solving the next system.
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Example 4. Let us consider the system of nonlinear equations:

(5)

∣∣∣∣ 36x + ey = e+ 68
4 arctan

(
x
2

)
+ 18y = π + 18.

Let us consider the functions

F (x, y) = −x
8
− ey

32
+
e− 60

32
, G(x, y) = −x

8
− ey

32
− e− 60

32
,

f(x, y) = −
arctan

(
x
2

)
4

− y

8
+
π − 14

16
, g(x, y) = −

arctan
(
x
2

)
4

− y

8
− π − 14

16
.

It is easy to check that F : [2,+∞) × [1, 1.5] → (−∞,−2], f : [2,+∞) × [1, 1.5] →
[−1.5,−1], G : (−∞,−2]× [−1.5,−1]→ [2,+∞), g : (−∞,−2]× 5− 1.5,−1]→ [1, 1.5] and
problem of finding the best proximity points of (F, f) is equivalent to (5).

The ordered pair ((F, f), (G, g)) is a cyclic contraction with constants 1
8
, e1.5

32
, 1

16
, 1

8
and

the unique solution of (5) is (2, 1).

Table 4. Number 2m of iterations needed by the a priori estimate

ε 0.1 0.01 0.001 0.0001 0.00001 0.000001
2m 4 6 8 10 12 14

Table 5. Number 2m of iterations needed by the a posteriori estimate

ε 0.1 0.01 0.001 0.0001 0.00001 0.000001
2m 4 8 12 14 16 20

If we try to solve system (5) with the help of Maple 18.00, we get as an answer

x = 2tan(RootOf(72tan( Z) + e−
2
9
Z+ 1

18
π+1 − e− 72))

y = −2

9
RootOf(72tan( Z) + e−

2
9
Z+ 1

18
π+1 − e− 72) +

π

18
+ 1.

If we try numerically to approximate the solutions of the system (5), with the help of
Maple 18.00, we get as an answer {x = 2.000000000, y = .9999999998}.

Application of Theorem 13 in solving of systems of linear equations

We will present an application of the results for modified coupled best proximity points
in solving systems of linear equations, generalizing the results from [28].

Example 5. Let p, q, r,m, n, k > 0 and let us consider the system of linear equations:

(6)

∣∣∣∣ px+ qy = r
my + nx = k.

Let us assume that p ≥ q and m ≥ n. Let a = kq−nr
mq−np , b = − rp−mr

mq−np be the solutions of the

system (6).
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Let µ > 0 be such that max
¶
µ+ (1+µ)q

p
, µ+ (1+µ)n

m

©
< 1.

Let us consider the functions

F (x, y) = −µx− (1 + µ)q

p
y +

(1 + µ)r

p
− 2a, G(x, y) = −µx− (1 + µ)q

p
y − (1 + µ)r

p
+ 2a,

f(x, y) = −µy − (1 + µ)n

m
x+

(1 + µ)k

m
− 2b, g(x, y) = −µy − (1 + µ)n

m
x− (1 + µ)k

m
+ 2b.

The ordered pair ((F, f), (G, g)) is a cyclic contraction with constants µ, (1+m)(q)
p

, µ,
(1+m)(n)

m
. The rate of convergence depends on the constant max

¶
µ+ (1+µ)q

p
, µ+ (1+µ)n

m

©
, which

is an increasing function of µ. That is why by choosing a smaller µ ∈ (0, 1) we will get
faster convergence. It is not possible to choose µ = 0 and therefore the upper bound of the

convergence max
¶
q
p
, n
m

©
could not be obtained.

We will consider a particular case of Example 5.

Example 6. Let us consider the space R, endowed with the canonical norm | · |. We
search for the solutions of the system

(7)

∣∣∣∣ 2x+ y = 12
3y + x = 11.

Table 6. Number 2m of iterations needed by the a priori estimate

ε 0.1 0.01 0.001 0.0001 0.00001 0.000001
µ = 1/4 48 66 82 100 116 134
µ = 1/8 48 64 82 98 116 134
µ = 1/80 46 64 80 98 116 132

Table 7. Number 2m of iterations needed by the a posteriori estimate

ε 0.1 0.01 0.001 0.0001 0.00001 0.000001
µ = 1/4 210 406 666 1036 1432 1982
µ = 1/8 56 106 190 276 378 496
µ = 1/80 22 45 78 106 154 210

Existence and uniqueness of coupled fixed points and coupled best proximity
points of p–cyclic contractions

Let Ai, i = 1, 2, . . . , p be nonempty sets. Just to simplify some of the notations we will
assume that Ap+k = Ak for k = 1, 2, . . . , p.

The notion of a coupled best proximity point for cyclic maps was defined in [49] and
the notion of coupled best proximity point for p–cyclic maps was introduced in [33]. We will
combine both definitions to define a coupled best proximity point for a p–cyclic maps.

Definition 28. Let Ai, i = 1, 2, . . . , p be nonempty subsets of a metric space (X, ρ)
we call a map T ∪pi=1 (Ai × Ai) → ∪pi=1(Ai × Ai) a p–cyclic map if T : Ai × Ai → Ai+1 for
i = 1, 2, . . . , p.
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Definition 29. Let Ai, i = 1, 2, . . . , p be nonempty subsets of a metric space (X, ρ) and
T be a p–cyclic map. A point (x, y) ∈ Ai × Ai is said to be a best proximity point of T in
Ai × Ai, if ρ(x, T (x, y)) = ρ(y, T (y, x)) = dist(Ai, Ai+1).

Following [26] we will define an iterated sequence {(xn, yn)}∞n=0, generated by a p–cyclic
map T .

Definition 30. Let {Ai}pi=1 be nonempty subsets of a metric space (X, ρ) and T be a
p–cyclic map. Let for every (x0, y0) ∈ Ai × Ai we define the sequence (xn, yn) inductively by
(x1, y1) = (T (x0, y0), T (y0, x0)) and if (xn, yn) has been already defined then (xn+1, yn+1) =
(T (xn, yn), T (yn, xn)).

Following [33] we will define a cyclic contractive condition for a p–cyclic map T : Ai ×
Ai → Ai+1 for i = 1, 2, . . . , p.

Definition 31. Let {Ai}pi=1 be nonempty subsets of a metric space (X, ρ) and T be a
p–cyclic map. The map T is called p–cyclic contraction. If there exist α, β ≥ 0, α+β ∈ (0, 1),
such that the inequality

ρ(T (x, y), T (u, v)) ≤ αρ(x, u) + βρ(y, v) + (1− (α + β))dist(Ai, Ai+1)

holds for every (x, y) ∈ Ai × Ai, (u, v) ∈ Ai+1 × Ai+1, 1 ≤ i ≤ p.

The next lemma is a generalization of the results from [33], where authors have proven
that in the case of a one variable maps T , that the distances between the successive sets
should be equal.

Lemma 3. Let {Ai}pi=1 be nonempty subsets of a metric space X and T be a p–cyclic
contraction map. Then dist(Ai, Ai+1) = dist(Ai+1, Ai+2) for i = 1, 2, . . . , p.

By Lemma 3 it follows that whenever we consider a p–cyclic map T , then the dis-
tances between the consecutive sets are equal and we can use the notation d = d(Ai, Ai+1) =
d(Ai−1, Ai) = . . . = d(A1, A2).

Coupled fixed points for p–cyclic maps

Theorem 14. Let A1, A2, . . . , Ap be nonempty, closed and convex subsets of a complete
metric space (X, ρ). Let T be a p–cyclic map. If here exist α, β ≥ 0, α + β ∈ (0, 1), such
that the inequality d(T (x, y), T (u, v)) ≤ αd(x, u) + βd(y, v) holds for every (x, y) ∈ Ai × Ai,
(u, v) ∈ Ai+1 ×Ai+1, 1 ≤ i ≤ p. Then there exists a unique order pair (z, v) ∈ ∩pi=1(Ai ×Ai),
such that, if (x0, y0) ∈ Ai × Ai be an arbitrary point of Ai × Ai, the sequence {(xn, yn)}}∞n=0

converges to (z, v) and the order pair (z, v) is a coupled fixed point of T . Moreover, there hold

(i) the a priori estimate max{ρ(xn, z), ρ(yn, z)} ≤
γn

1− γ
(ρ(x1, x0) + ρ(y1, y0))

(ii) the a posteriori estimate max{ρ(xn, z), ρ(yn, v)} ≤ γ

1− γ
(ρ(xn−1, xn) + ρ(yn−1, yn))

(iii) the rate of convergence ρ(xn, z) + ρ(y, v) ≤ γ(ρ(xn−1, z) + ρ(yn−1, v)),

where γ = α + β.
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contractions

Coupled best proximity points for p–cyclic contraction maps

Let us recall some of the notations used in the beginning of this section, just to fit
some of the formulas in the text field Pn,m(x, y) = ‖xn − xm‖+ ‖yn − ym‖ and Wn,m(x, y) =
Pn,m(x, y)− 2d = ‖xn − xm‖+ ‖yn − ym‖ − 2d, where {xn}∞n=0 and {yn}∞n=0 be the sequences
defined in Definition 30.

Theorem 15. Let A1, A2, . . . , Ap be nonempty, closed and convex subsets of a uniformly
convex Banach space (X, ‖ · ‖) with modulus of convexity of power type q with ta constant C.
Let T be a p–cyclic contraction. Then there exists a unique order pair (zi, vi) ∈ Ai × Ai
(1 ≤ i ≤ p), such that, if (x, y) ∈ Ai × Ai is any coupled point of Ai × Ai, the sequence
T pn(x, y) converges to (zi, vi) and order pair (zi, vi) is a best proximity point of T in Ai×Ai.
Moreover, if T j(zi, vi) = zi+j and T j(vi, zi) = vi+j, then a order pair (zi+j, vi+j) is a coupled
best proximity point in Ai+j × Ai+j for j = 1, . . . , (p − 1) and (zi, vi) is the unique periodic
point of T with period p. There hold
the a priori error estimate

max{‖ξ − xpm‖ , ‖η − xpm‖} ≤ P0,1(x, y)
q

 
W0,1(x, y)

Cd
·
(
q
√
γ
)pm

1− q
√
γp

and the a posteriori error estimate

max{‖ξ − xpn‖ , ‖η − xpn‖} ≤ Ppn,pn−1(x, y)
q

 
Wpn,pn−1(x, y)

Cd

q
√
γ

1− q
√
γp
,

where (ξ, η) is the best proximity point of T in Ai for (x0, y0) ∈ Ai × Ai and γ = α + β.

If p = 2, we get as a particular case the results from [29].

Applications of Theorem 15

Let ϕ, ψ : [1,+∞) → [1,+∞) be such that max{ϕ(x), ψ(x)} ≤ x for any x ∈ [1,+∞).
Let us define the function f(x, y) = λ + (1 − λ)(µϕ(x) + (1 − µ)ψ(y)). Let us consider the
system of equations

(8)

∣∣∣∣∣∣∣∣
|x|p + |λ+ (1− λ)(µϕ(x) + (1− µ)ψ(y))|p = 2
|y|p + |λ+ (1− λ)(µψ(y) + (1− µ)ϕ(x))|p = 2
x− f(f(f(x, y), f(y, x)), f(f(y, x), f(x, y))) = 0
y − f(f(y, x), f(x, y)), f(f(x, y), f(y, x))) = 0

for x, y ≥ 0 and λ, µ ∈ (0, 1).
Let A1 = {(x, 0, 0) : x ≥ 1}, A2 = {(0, x, 0) : x ≥ 1}, A3 = {(0, 0, x) : x ≥ 1}

be subsets of (R3, ‖ · ‖p), p ∈ (1,∞). Let us define the maps by T ((x, 0, 0), (y, 0, 0)) =
(0, f(x, y), 0); T ((0, x, 0), (0, y, 0)) = (0, 0, f(x, y)); T ((0, 0, x), (0, 0, y)) = (f(x, y), 0, 0) for
some λ, µ ∈ (0, 1). The map T satisfies the conditions of Theorem 15. Therefore there exist
(z, z), which is a coupled best proximity point of T in A1 × A1 and it is easy to see that
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z = (1, 0, 0). Consequently (z, z) is the unique solution of the system of equations∣∣∣∣∣∣∣∣
‖x− T (x, y)‖pp = 2
‖y − T (y, x)‖pp = 2
x− T 3(x, y) = 0
y − T 3(y, x) = 0,

which is the solution of (8).
If we try to solve (8) with the use of some Algebraic Computer System, for example

Maple 18.00, the software could not find the exact solution even for not too much complicated
functions (p = 2, ϕ(x) = x1/2, ψ(x) = x).

If we try to solve it numerically, Maple 18.00 finds that x = y = 1, but could not find
that this is a solution for every λ, µ ∈ (0, 1) and presents two approximations of λ and µ.

If we consider the particular case p = 3, ϕ(x) =
√
x and ψ(x) =

√
log(x) + 1, then

Maple 18.00 could not solve (8) even numerically.

Chapter III
COUPLED BEST PROXIMITY POINTS IN MODULAR FUNCTION SPACES

We have tried to generalize the idea of best proximity points in modular function spaces
and to present an application for integral operators in Orlicz function spaces, endowed with
an Orlicz function modular.

A generalization of Eldred and Veermani’s key lemmas in an investigation of best
proximity points in modular function spaces

The next lemmas are a generalization of the key lemmas from [22] of Eldred and Veer-
mani in modular function spaces.

Lemma 4. Let ρ ∈ R. Let ρ be (UC1), has the ∆2–property, A ⊂ Lρ be a ρ–closed
and convex subset and B ⊂ Lρ be ρ–closed subset. If the sequences {xn}∞n=1, {zn}∞n=1 ⊂ A and
{yn}∞n=1 ⊂ B be such that:

(i) limn→∞ ρ(zn − yn) = dρ

(ii) for every ε > 0 there exists N0 ∈ N such that for every m > n ≥ N0 there holds the
inequality ρ(xm − yn) ≤ dρ + ε.

Ten for every ε > 0 there exists N1 ∈ N such that for every m > n ≥ N1 there holds the
inequality ρ(xm − zn) < ε.

Corollary 1. Let ρ ∈ R. Let ρ be (UC1), has the ∆2–property, A be a ρ–closed and
convex subset of Lρ and B be ρ–closed subset of Lρ. If the sequences {xn}∞n=1, {zn}∞n=1 ⊂ A
and {yn}∞n=1 ⊂ B be such that:

(i) limn→∞ ρ(zn − yn) = dρ

(ii) limn→∞ ρ(xn − yn) = dρ.
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Then limn→∞ ρ(xn − zn) = 0.

Lemma 5. Let ρ ∈ R. Let ρ has the ∆2–property, be uniformly continuous and A,B ⊂
Lρ be subsets. If the sequences {yn}∞n=1 ⊂ B and {xn}∞n=1, {zn}∞n=1 ⊂ A be such that:

(i) limn→∞ ρ(zn − xn) = 0

(ii) for every ε > 0 there exists N0 ∈ N such that for every m ≥ n ≥ N0 there holds the
inequality ρ(zm − yn) ≤ dρ + ε.

Then for every ε > 0 there exists N1 ∈ N such that for every m ≥ n ≥ N1 there holds the
inequality ρ(xm − yn) < dρ + ε.

We would like to mention that if ρ satisfies the triangle inequality, the proof is trivial
and we do not need the assumption that ρ is uniform continuous.

Corollary 2. Let ρ ∈ R. Let ρ has the ∆2–property, be uniformly continuous and
A,B ⊂ Lρ be subsets. If the sequences {xn}∞n=1, {zn}∞n=1 ⊂ A and {yn}∞n=1 ⊂ B be such that:

(i) limn→∞ ρ(zn − xn) = 0

(ii) limn→∞ ρ(zn − yn) = dρ.

Then limn→∞ ρ(xn − yn) = dρ.

Best proximity points for cyclic ρ contraction maps in modular function spaces

We will generalize the notion of best proximity point in a metric spaces [22] for modular
function spaces.

Definition 32. Let ρ ∈ R, A,B ⊂ Lρ be two subsets we call a modular distance between
the sets A and B the number inf{ρ(x, y) : x ∈ A, y ∈ B} and we will denote it by dρ(A,B).

Definition 33. Let ρ ∈ R, A,B ⊂ Lρ be two subsets and T : A ∪ B → A ∪ B be a
cyclic map. A point ξ ∈ A is called a ρ–best proximity point of the cyclic map T in A if
ρ(ξ, T ξ) = dρ(A,B).

Definition 34. Let ρ ∈ R, A,B ⊆ Lρ be subsets. The map T : A∪B → A∪B is called
a cyclic ρ–contraction if it is cyclic map and there exist k ∈ (0, 1), such that the inequality

ρ(Tx− Ty) ≤ kρ(x− y) + (1− k)dρ(A,B)

hold for every x ∈ A, y ∈ B.

To simplify the notations we will denote dρ(A,B) by dρ.
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Best proximity points for cyclic ρ–contractions in modular function spaces

The next theorem concerns just best proximity points, but not coupled best proximity
points. As far as it is the first result on best proximity points in modular function spaces
and we will use its technique we think that it will be good for an easier understanding of the
readers.

Theorem 16. Let ρ ∈ R. Let ρ be (UC1), has the ∆2–property and be uniformly
continuous. Let A,B ⊆ Lρ be ρ–closed, convex subsets, A∪B be ρ–bounded and T : A∪B →
A ∪ B be a cyclic ρ–contraction. Then there there exists a unique x ∈ A such that x is a
ρ–best proximity point of T in A, T 2x = x and for any x0 ∈ A the point x is a ρ–limit of the
sequence {T 2nx0}∞n=1.

An application of ρ-best proximity points for integral equations in Orlicz function
spaces

Theorem 17. Let M be an Oricz function, which satisfies the ∆2 condition and is very
convex. Let LM̃ be the modular function space generated by M . Let α, β, ϕ, ψ ∈ LM̃ . Let us
denote A = {u ∈ LM̃ : α(x) ≤ u(x) ≤ ϕ(x} and B = {u ∈ LM̃ : ψ(x) ≤ u(x) ≤ β(x)}. Let
K : [0, 1]× [0, 1]→ R and f, g : [0, 1]→ R. Let the map T be defined by

Tu(x) = −sign(u(x))

Ç
g(x) +

∫ 1

0

K(x, s)f(u(s))ds

å
.

Let the following conditions take place

(i) β(x) < 0 < α(x) for every x ∈ [0, 1]

(ii) M̃(α− β) > 0

(iii) there exist k ∈ (0, 1) such that the inequalities M̃(Tu− Tv) ≤ kM̃(u− v) + (1− k)dM̃
holds for any u ∈ A, v ∈ B

(iv) for any u ∈ A and v ∈ B there hold the inclusions Tu ∈ B and Tv ∈ A.

Then T is a cyclic M̃–contraction and there exists a unique u ∈ A such that u is a
M̃–best proximity point of T in A, T 2u = u and for any u0 ∈ A the sequence {T 2nu0}∞n=1 is

M̃–convergent to u.

Example 7. Let L2̃[0, 1] be the modular function space, which is generated by the Orlicz

function M(t) = |t|2. Let us consider the functions f(x) = |x|, K(x, s) =
xs

2
and g(x) =

5

6
x.

Denote the sets A = {u ∈ L2̃[0, 1] : x ≤ u(x) ≤ nx}, B = {v ∈ L2̃[0, 1] : −nx ≤ v(x) ≤ −x},
where n ∈ N. The map T : A ∪B → A ∪B, defined by

Tu(x) = −sign(u(x))

Ç
g(x) +

∫ 1

0

K(x, s)f(u(s))ds

å
is a cyclic M̃–contraction and x ∈ A is a M̃–best proximity point of T in A, T (x) = −x,
T 2(x) = T (−x) = x.
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Coupled fixed points and best proximity points in modular function spaces

Coupled fixed points and coupled best proximity points in modular function
spaces

Definition 35. Let A and B be nonempty subsets of a modular function space Lρ,
F : A×A→ B. An ordered pair (x, y) ∈ A×A is called a coupled best proximity point of F
in A if ρ(x− F (x, y)) = ρ(y − F (y, x)) = d.

Definition 36. Let A be nonempty subset of a modular function space X, F : A×A→
A. An ordered pair (x, y) ∈ A × A is said to be a coupled fixed point of F A if x = F (x, y)
and y = F (y, x).

It is easy to see that if A = B in Definition 35, then a coupled best proximity point
reduces to a coupled fixed point.

Definition 37. ([49])Let A and B be nonempty subsets of a modular function space
Lρ. Let F : A × A → B and G : B × B → A. For any pair (x, y) ∈ A × A we define the
sequences {xn}∞n=0 and {yn}∞n=0 by x0 = x, y0 = y and

x2n+1 = F (x2n, y2n), y2n+1 = F (y2n, x2n)
x2n+2 = G(x2n+1, y2n+1), y2n+2 = G(y2n+1, x2n+1)

for all n ≥ 0.

Everywhere in this section, when considering the iterated sequences {xn}∞n=0, {yn}∞n=0

we will assume that they are the sequences defined in Definition 37.

Coupled fixed points for ρ–contraction maps in modular function spaces

Definition 38. Let A be nonempty subsets of a modular function space Lρ, F : A×A→
A is said to be a ρ–contraction if there exist non-negative numbers α, β, such that α + β < 1
and there holds the inequality ρ(F (x, y)−F (u, v)) ≤ αρ(x−u)+βρ(y−v) for all x, y, u, v ∈ A.

Theorem 18. Let ρ ∈ R. Let A ⊂ Lρ be nonempty, ρ–closed and ρ–bounded. Let
F : A × A → A be a ρ–contraction. Then F has unique coupled fixed points (x, y) ∈ A.
Moreover for any (x0, y0) ∈ A the sequences {xn}∞n=0, {yn}∞n=0 converge to the unique coupled
fixed points (x, y) ∈ A .

Coupled best proximity points for cyclic ρ–contractions in modular function
spaces

Definition 39. Let A and B be nonempty subsets of a modular function space Lρ,
F : A × A → B and G : B × B → A. The ordered pair (F,G) is said to be a cyclic ρ–
contraction if there exist non-negative numbers α, β, such that α + β < 1 and there holds
the inequality ρ(F (x, y) − G(u, v)) ≤ αρ(x − u) + βρ(y − v) + (1 − (α + β))dρ(A,B) for all
(x, y) ∈ A× A and (u, v) ∈ B ×B.

Theorem 19. Let ρ ∈ R. Assume that ρ satisfies (UC1), has the ∆2–property and be
uniformly continuous. Let A,B ⊆ Lρ be ρ–closed, ρ–bounded, convex subsets and F : A×A→
B and G : B × B → A be an order pair (F,G) be cyclic ρ–contraction. Then there exists a
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unique order pair (x, y) ∈ A× A such that (x, y) is a coupled ρ–best proximity point of F in
A (i.e. ρ(x − F (x, y)) + ρ(y − F (y, x)) = 2dρ(A,B)). There holds x = G(F (x, y), F (y, x)),
y = G(F (y, x), F (x, y)), the order pair (F (y, x), F (x, y)) is a coupled ρ–best proximity point
of G in B. More over for any initial guess (x0, y0) ∈ A×A the iterated sequences {xn}, {yn}
satisfied lim

n→∞
ρ(x2n − x) = 0, lim

n→∞
ρ(y2n − y) = 0, lim

n→∞
ρ(x2n+1 − F (x, y)) = 0, lim

n→∞
ρ(y2n+1 −

F (y, x)) = 0.

An Application of coupled best proximity points in modular function spaces

Let p ∈ [1,+∞), a > 0, α, β ∈ (0, 1) be such that α+ β < 1 and (1− α− β)a = γ. Let
us consider the system of equations

(9)

∣∣∣∣∣∣
|(1 + α)x+ βy + γ|p = (2a)p

|αx+ (1 + β)y + γ|p = (2a)p

x ≥ 0, y ≥ 0.

It is easy to check, by using a Computer Algebra Software, that the ordered pair (a, a)
is a solution of (9) if p ∈ N. If we try to solve this system for p 6∈ N then the computer will
give no answer.

Let us consider the space R|·|p of all reals endowed with the function modular ρp(·) = |·|p.
For p = 1 we get that the space R|·|1 , which is a normed space and from [29] it follows that
it is uniformly convex. Consequently if considered as modular function space we get that ρ1

satisfies (UC1), has the ∆2–property and is uniformly continuous and we can apply Theorem
19 in Rp.

Let us consider the subsets A = [a, b], B = [−b,−a] for 0 < a < b of Rp. Let us define
the functions F (x, y) = −αx− βy− γ and G(x, y) = −αx− βy + γ. The ordered pair (F,G)
is an cyclic ρ–contraction ordered pair and from Theorem 19 it follows that there exists a
unique order pair (x, y) ∈ A×A such that (x, y) is a coupled ρ–best proximity point of F in
A (i.e. ρp(x− F (x, y)) = (2a)p and ρp(y − F (y, x)) = (2a)p, which is just (9)). The solution
can be approximated by using the sequence of consecutive iterations {xn}∞n=1 and {xn}∞n=1,
defined in Definition 37, starting with an arbitrary guess points x0 and y0.

If we put α = β = 1
4
, γ = 1

2
, a = 1, b = 2 and p = 1 we get Example 3.

Coupled fixed points for ρ–Kannan contractions in modular function spaces

Definition 40. Let A be nonempty subsets of a modular function space Lρ, F : A×A→
A is said to be a ρ–Kannan contraction if there exist α ∈ [0, 1/2), so that there holds the
inequality ρ(F (x, y)− F (u, v)) ≤ α (ρ(x− F (x, y)) + ρ(u− F (u, v))) for all x, y, u, v ∈ A.

Theorem 20. Let ρ ∈ R. Let A ⊂ Lρ be nonempty, ρ–closed and ρ–bounded. Let
F : A×A→ A be a cyclic ρ-Kannan contraction map. Then F has unique coupled fixed points
(x, y) ∈ A. Moreover for any (x0, y0) ∈ A the sequences {xn}, {yn} defined by x1 = F (x0, y0),
y1 = F (y0, x0), xn+1 = F (xn, yn), yn+1 = F (yn, xn) for n = 1, 2, . . . are ρ-converge to the
unique coupled fixed points (x, y) ∈ A, i.e. limn→∞ ρ(xn − x) = 0 and limn→∞ ρ(yn − y) = 0.
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APPLICATIONS OF SEMI–CYCLIC MAPS IN THE INVESTIGATION OF EQUILIBRIUM IN
DUOPOLY MARKETS

Coupled best proximity points for cyclic ρ–Kannan contractions in modular func-
tion spaces

Definition 41. Let A and B be nonempty subsets of the modular function space Lρ.
The pair of maps F : A × A → B and G : B × B → A is called an order cyclic ρ-Kannan
contraction pair, if there is α ∈ [0, 1/2), so that there holds the inequality

ρ(F (x, y)−G(u, v)) ≤ α (ρ(x− F (x, y)) + ρ(u−G(u, v))) + (1− 2α)dρ(A,B)

for any x, y ∈ A and u, v ∈ B.

Theorem 21. Let ρ ∈ R. Assume that ρ satisfies (UC1), has the ∆2–property and be
uniformly continuous. Let A,B ⊆ Lρ be ρ–closed, ρ–bounded, convex subsets and F : A×A→
B and G : B×B → A be an order cyclic ρ-Kannan contraction pair (F,G). Then there exists
a unique order pair (x, y) ∈ A × A such that (x, y) is a coupled ρ–best proximity point of F
in A (i.e. ρ(x−F (x, y)) + ρ(y−F (y, x)) = 2dρ(A,B)). There holds x = G(F (x, y), F (y, x)),
y = G(F (y, x), F (x, y)) the order pair (F (y, x), F (x, y)) is a coupled ρ–best proximity point
of G in B. More over for any initial guess (x0, y0) ∈ A × A the iterated sequences {xn}∞n=0,
{yn}∞n=0 satisfied lim

n→∞
ρ(x2n − x) = 0, lim

n→∞
ρ(y2n − y) = 0, lim

n→∞
ρ(x2n+1 − F (x, y)) = 0,

lim
n→∞

ρ(y2n+1 − F (y, x)) = 0.

Chapter IV
APPLICATIONS OF COUPLED FIXED POINTS AND COUPLED BEST PROX-
IMITY POINTS OF SEMI–CYCLIC MAPS IN THE INVESTIGATION OF
EQUILIBRIUM IN DUOPOLY MARKETS

It may turn out difficult or impossible to solve (1), thus it is often advised to search for
an approximate solution. Another drawback, when searching for an approximate solution is
that it may not be stable.

We can present the solutions of (1) by an implicit formula, that defines the response

functions, i.e. x =
c′1(x)−P (x+y)

P ′(x+y)
= F (x, y) and y =

c′2(y)−P (x+y)

P ′(x+y)
= f(x, y).

Thus, finding the equilibrium production (x, y) can be considered as the problem of
finding coupled fixed points. Following [24], we will call the functions F and f the response
functions for the two manufacturers participating in the duopoly market.

In real models, it is possible to construct response functions that are not a consequence
of the problem of maximizing participants’ payoff functions Πi, i = 1, 2. In reality, each
participant reacts (i.e. has a response function) according to the production he has sold in
the previous interval and the quantity of goods sold by his competitor, taking into account
the demand function. For example, let n currently the quantities of goods produced by
the two participants be the ordered pair (xn, yn). Let producer one change his production
for the moment n + 1 to xn+1 = F (xn, yn), and let producer two change his production to
yn+1 = f(xn), yn). In this way an iterative series of productions {(xn, yn)}∞n=1 is generated.
We will have equilibrium in the market if there are two possible quantities of output x and
y, so that x = F (x, y) and y = f(x, y).
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The problem of solving the equations x = F (x, y) and y = f(x, y) is the problem of
finding coupled fixed points for an ordered pair of maps (F, f) [11] (or more precisely of the
problem of modified coupled fixed points). Using the model through response functions, we
change the payoff maximization problem to a coupled fixed points one and thus we can get
rid of the conditions for convexity and differentiability [1, 25, 37].

Focusing on response functions, allows to put together Cournot and Bertand models.
Indeed let the first company have reaction be F (X, Y ) and the second one f(X, Y ), where
X = (x, p) and Y = (y, q). Here x and y denote the output quantity and (p, q) are the prices
set by players. In this case companies can compete in terms of both price and quantity.

Semi–cyclic maps

In order to apply the technique of coupled best proximity points and coupled fixed
points we will generalize the mentioned above notions. When we investigate duopoly with
players’ response functions F and f , we have seen that each player using the information
about his production and the rival’s production choose a change in his production, i.e., we
define F : A×B → A, f : A×B → B instead of the cyclic type of maps (Definition 8). The
maps are not noncyclic maps (F (A) ⊆ A and f(B) ⊆ B [23]). Therefore we introduce the
notion of semi-cylcic maps.

Definition 42. Let A, B be nonempty subsets of X. The ordered pair of maps F :
A×B → A, f : A×B → B will be called a semi–cyclic ordered pair of maps.

Definition 43. Let A, B be nonempty subsets of a metric space (X, ρ) and (F, f),
F : A×B → A, f : A×B → be a semi–cyclic ordered pair of maps. For any pair (x, y) ∈ A×B
we define the sequences {xn}∞n=0 and {yn}∞n=0 by x0 = x, y0 = y and xn+1 = F (xn, yn),
yn+1 = f(xn, yn) for all n ≥ 0.

Coupled fixed points for semi–cyclic maps

We generalize the notion of coupled fixed points for semi–cyclic maps.

Definition 44. Let A, B be nonempty subsets of a metric space (X, ρ) and (F, f),
F : A × B → A, f : A × B → be a semi–cyclic ordered pair of maps. An ordered pair
(ξ, η) ∈ A×B is called a coupled fixed point of (F, f) if ξ = F (ξ, η) and η = f(ξ, η).

If B = A and f(x, y) = F (y, x), then we get the definition of a coupled fixed point from
[11].

We will generalize the contractive condition from [22] for semi-cyclic maps.

Definition 45. Let A, B be nonempty subsets of a metric space (X, ρ) and (F, f),
F : A×B → A, f : A×B → be a semi–cyclic ordered pair of maps. Let there exist a subset
D ⊆ A×B, such that F : D → A, f : D → B and (F (x, y), f(x, y)) ⊆ D for every (x, y) ∈ D.
The semi–cyclic ordered pair of maps (F, f) is said to be a contraction of type one semi–cyclic
ordered pair if there exist non-negative numbers α, β, γ, δ, such that max{α + γ, β + δ} < 1
and there holds the inequality

(10) ρ(F (x, y), F (u, v)) + ρ(f(z, w), f(t, s) ≤ αρ(x, u) + βρ(y, v) + γρ(z, t) + δρ(w, s)

for all (x, y), (u, v), (z, w), (t, s) ∈ D.
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Applications of Theorem 22 and examples

Theorem 22. Let A, B be nonempty subsets of a metric space (X, ρ). Let there ex-
ist a closed subset D ⊆ Ax × Ay and maps F : D → Ax and f : D → Ay, such that
(F (x, y), f(x, y)) ⊆ D for every (x, y) ∈ D. Let the ordered pair (F, f) be a semi–cyclic
contraction of type one. Then

(i) there exists a unique pair (ξ, η) in D, which is a unique coupled fixed point for the
ordered pair (F, f). Moreover the iteration sequences {xn}∞n=0 and {yn}∞n=0, defined in
Definition 43 converge to ξ and η respectively, for any arbitrary chosen initial guess
(x, y) ∈ Ax × Ay

(ii) a priori error estimates hold max {ρ(xn, ξ), ρ(yn, η)} ≤ kn

1−k (ρ(x1, x0) + ρ(y1, y0))

(iii) a posteriori error estimates hold max {ρ(xn, ξ), ρ(yn, η)} ≤ k
1−k (ρ(xn−1, xn)+ρ(yn−1, yn))

(iv) rate of convergence for the sequences of successive iterations

ρ(xn, ξ) + ρ(yn, η) ≤ k (ρ(xn−1, ξ) + (yn−1, η)) ,

where k = max{α + γ, β + δ}.

If in addition f(x, y) = F (y, x) then the coupled fixed point (x, y) satisfies x = y.

Applications of Theorem 22 and examples

Everywhere we will assume that competing companies in the market produce goods
that are, if not identical, perfect substitutes. Although the two goods may have nothing in
common, the assumption of being perfect substitutes means that within the each type of
goods customers are free to replace a product from the first company with one produced by
the second and vice versa.

We will state Theorem 22 in an economic language.

Assumption 1. Let there be a duopoly market, satisfying the following assumptions:

1. the two firms are producing homogeneous goods that are perfect substitutes

2. the first firm can produce qualities from the set A and the second firm can produce
qualities from the set B, where A and B be closed, nonempty subsets of a complete
metric space (X, ρ)

3. let there exist a closed subset D ⊆ A × B and maps F : D → A and f : D → B, such
that (F (x, y), f(x, y)) ⊆ D for every (x, y) ∈ D, be the response functions for firm one
and two respectively

4. let the semi–cyclic ordered pair (F, f) satisfies the conditions of Theorem 22.

Then there exists a unique pair (ξ, η) in D, such that ξ = F (ξ, η) and η = f(ξ, η), i.e.
a market equilibrium pair. Moreover the iteration sequences {xn}∞n=0 and {yn}∞n=0, defined in
Definition 43 converge to ξ and η respectively and the error estimates of Theorem 22 hold.

If in addition f(x.y) = F (y, x) then the coupled fixed point (x, y) satisfies x = y.
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Remark 1. Let the two players have one and the same response function. That is if
player one has a production x and player two has a production y then the first player reaction
will be F (x, y) and the second player reaction will be f(x, y) = F (y, x). It follows that the
equilibrium pair (x, y) will satisfy x = y, i.e. both firms will have equal production. This
means that if both firms have one and the same technology, one and the same knowledge on
the market that will affect to one and the same response functions, then the equilibrium will
be reached at the level of equal productions.

Remark 2. Let us consider a duopoly market. Let the two firms produce qualities from
the set A and the second firm can produce qualities from the set B, where A and B are
nonempty subsets of a complete metric space (X, ρ). Any of the firms can produce a bundle
of products x = (x1, x2, . . . xn) ∈ X. Assumption 1 ensures the existence and uniqueness
of the production bundles (x1, x2, . . . xn), (y1, y2, . . . yn) ∈ A × B of n-goods, that present the
equilibrium in a duopoly economy.

A Linear Case, When Each Player Is Producing a Single Product, Goods Being
Perfect Substitutes

Example 8. Let us consider a market with two competing firms, each firm producing
just one product, and both goods are perfect substitutes. Let the two firms produce quantities
x ∈ A and y ∈ B, respectively, where A,B ⊂ [0,+∞) and (X, ρ) be the complete metric space
(R, | · |). Let us consider the response functions of player one be F (x, y) = a − s − px − qy
and player two be f(x, y) = a− r − µy − νx, where

1. a, s, r, p, q, µ, ν > 0, s < a, r < a, max{p+ µ, q + ν} < 1

2. A =
î
0, a−s

p

ó
∩
î
0, a−r

µ

ó
and B =

î
0, a−s

q

ó
∩
[
0, a−r

ν

]
3. D can be defined in three ways:

(3a) D =
î
0, aµ−aq−sµ−qr

µp−νq

ó
×
î
0, ap−aν+sν−pr

µp−νq

ó
, provided that

a− s ≤ aµ− aq − sµ− qr
µp− νq

and a− r ≤ ap− aν + sν − pr
µp− νq

(3b) D = [0, a− s] × [0, a− r], provided that µr + νs − aµ − aν + a − r > 0 and
ps+ qr − ap− aq + a− s > 0

(3c) D =


0 ≤ x ≤ a− s

p

0 ≤ y ≤ a− r − µx
ν

.

Example 9. Let us consider a classic example, where the price function is linear and
so are the cost functions of both players. Assuming the feasible market price is defined by
P (x, y) = 120 − x − y, it is expected that additional output x from the first company as well
as extra production y of the second one will cause a decrease in prices. Therefore under
equilibrium conditions x + y will be the total production of the two firms and it will also be
reflected in prices. Let the two firms have cost functions equal to 30x and 20y, respectively.
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Applications of Theorem 22 and examples

Following the Cournot model after solving (1) we get the response functions F : D → A
and f : D → B of the two firms F (y) = 90−y

2
and f(x) = 100−x

2
, where B = [0, 90], A = [0, 100]

and D = A×B. Consequently it is a special case of the general example with a = 60, s = 15,
r = 10, p = 0, q = 1

2
, µ = 1

2
, ν = 0.

Table 8. Values of the iterated sequence (xn, yn) if started with (40, 60).

n 0 1 2 5 10 20
xn 40 15 30.0 25.94 26.68 26.67
yn 60 30 42.5 36.25 36.69 36.67

Table 9. Values of the iterated sequence (xn, yn) if started with (100, 20).

n 0 1 2 5 10 20
xn 100 35 45.0 27.19 26.74 26.67
yn 20 0 32.5 34.38 36.65 36.67

Table 10. Number n of iterations needed by the a priori estimate if started with (100, 20).

ε 0.1 0.01 0.001 0.0001 0.00001
n 11 15 18 21 25

Table 11. Number n of iterations needed by the a posteriori estimate if started with (100, 20).

ε 0.1 0.01 0.001 0.0001 0.00001
n 6 8 11 14 17

A nonlinear case, when each player is producing a single product, while goods
sold are perfect substitutes

Example 10. Let us consider a market with two competing firms, producing perfect
substitute products with quantities x ∈ A and y ∈ B, respectively, where A,B ⊂ [0,+∞) and
(X, ρ) is the complete metric space (R, | · |). Let us assume that each firm produces at least one

item, i.e., x, y ≥ 1. Let us consider the response functions of player one F (x, y) =
90−x− y

8
−
√
y

2

2

and player two f(x, y) =
100−x

4
−y−

√
x

3
, where

(3a) A = [1, 44] and B = [1, 33]

(3b) D can be defined as D = A×B.

There exists an equilibrium pair (x, y) and for any initial start in the economy the
iterated sequences (xn, yn) converge to the market equilibrium (x, y). We get in this case that
the equilibrium pair of the production of the two firms is (28.3, 21.9) and the total production
will be a = 50.2.
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Each player is producing two product types, goods from each type being perfect
substitutes

Example 11. Let us consider a market with two competing firms, and each firm is
producing two product types. For simplicity we assume that goods from each type produced
by major players are perfect substitutes. While it is possible that two types have nothing it
common, it still means that within each type customers can freely replace a product from the
first company with one manufactured by the second one. Let us assume that each firm produces
at least one item from each product, i.e. x = (x1, x2), y = (y1, y2), x1, x2, y1, y2 ≥ 1. Let us
denote the production of the two players by x = (x1, x2) and y = (y1, y2), respectively.

Let the market of the two goods be endowed with the p norm, p ∈ [1,∞), i.e.,

ρ((x1, x2), (y1, y2)) = ‖(x1, x2)− (y1, y2)‖p = (|x1 − y1|p + |x2 − y2|p)1/p .

Let us consider the response functions

F (x, y) = (F1(x, y), F2(x, y)) and f(x, y) = (f1(x, y), f2(x, y))

defined by

F (x, y) =


90− x1 + x2

2
− y1 + y2

3
3

,

90− x1 + x2

2
− y1 + y2

3
3

;

f(x, y) =


100− x1 + x2

4
− y1 + y2

3
4

100− x1 + x2

4
− y1 + y2

3
4

.

where

(1) A = [0, 30]× [0, 30] and B = [0, 25]× [0, 25]

(2) D = [0, 30]× [0, 30]× [0, 25]× [0, 25]

There exists an equilibrium pair (x, y) and for any initial start in the economy the
iterated sequences (xn, yn) converge to the market equilibrium (x, y). We get in this case that
the equilibrium pair of the production of the two firms is x = (19.27, 19.27), y = (19.36, 19.36)
and the total production will be a = (38.63, 38.63).

The players are producing a single product and compete on both quantities and
prices

There is a large number of goods where companies can compete on both quantities and
prices. In this case the equilibrium would depend on a balanced decision on what market
share to target at a reasonable price. Let us assume that there are only two major players
that produce homogeneous products. The first company can produce quantities from the set
A ⊆ [0,∞) at a price p ∈ P ⊆ [0,∞) and the second one can produce quantities from the set
B ⊆ [0,∞) at a price p ∈ Q ⊆ [0,∞), where A, B, P , Q are nonempty subsets. Let A× P ,
B ×Q be subsets of a complete metric space (R2, ρ).

Assumption 2. Let there be a duopoly market, satisfying the assumptions:
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1. the two firms are producing homogeneous, perfect substitute products

2. The first firm can produce quantities from the set A at a price p ∈ P and the second
firm can produce quantities from the set B at a price p ∈ Q, where A × P , B × Q are
nonempty, closed subsets of a complete metric space (R2, ρ)

3. let there exist a closed subset D ⊆ A × P × B × Q, such that F : D → A × P ,
f : D → B × Q and (F (x, p, y, q), f(x, p, y, q)) ⊆ D for every (x, p, y, q) ∈ D be the
response functions for firm one and two respectively

4. let there exist α, β, γ, δ > 0, max{α + γ, β + δ} < 1, such that the inequality

ρ(F (X, Y ), F (U, V ))+ρ(f(Z,W ), f(T, S)) ≤ αρ(X,U)+βρ(Y, V )+γρ(Z, T )+δρ(W,S),

where we use the notations X = (x, p1), Y = (y, q1), U = (u, p2), V = (v, q2), Z =
(z, p3), W = (w, q3), T = (t, p4), S = (s, q4) holds for all

(x, p1, y, q1), (u, p2, v, q2), (z, p3, w, q3), (t, p4, s, q4) ∈ D.

Then there exists a unique pair (ξ, p, η, q) in A×P×B×Q, which is a coupled fixed point
for the semi–cyclic ordered pair of maps (F, f), i.e. a market equilibrium pair. Moreover the
iteration sequences {xn}∞n=0, {pn}∞n=0, {yn}∞n=0 and {qn}∞n=0, defined in Definition 43 converge
to ξ, p, η, and q and the error estimates from Theorem 22 hold.

If in addition f(X, Y ) = F (Y,X) then the coupled fixed point (X, Y ) satisfies X = Y ,
i.e. x = y and p = q.

The considered model for simultaneous competition in prices and quantities can be
called the Cornot-Bertrand model.

Example of a duopoly model, where players compete on quantities and prices
simultaneously

Example 12. Let us consider a market with two competing firms, producing the same
product, and selling it at a price p and q respectively, i.e. X = (x, p), Y = (y, q). Let us
consider the response functions

F (X, Y ) = (F1(X, Y ), F2(X, Y )) and f(X, Y ) = (f1(X, Y ), f2(X, Y ))

defined by

F (X, Y ) =


90− x

2
− y

3
3

,

4− p

2
− q

3
3

;

f(X, Y ) =


100− x

4
− y

3
4

5− p

4
− q

3
4

.

Let X = (x, p) and Y = (y, q) be subsets of (R2, ‖ · ‖2) (the two dimensional Euclidean space).
Let

1. A× P = [0, 100]× [0, 5] and B ×Q = [0, 100]× [0, 4]
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2. D = [0, 100]× [0, 5]× [0, 100]× [0, 4].

There exists an equilibrium pair (X, Y ) and for any initial start in the economy the
iterated sequences (Xn, Yn) converge to the market equilibrium (X, Y ). We get in this case
that the equilibrium pair of the production of the two firms is X = (23.64, 1.03), Y =
(21.71, 1.09).

Coupled fixed points for semi-cyclic Hardy–Rogers type of contraction maps

We will generalize the notions from [17], by considering two different metric spaces
(Zi, ρi), i = 1, 2.

Definition 46. Let X1, X2 be nonempty subsets of the metric spaces (Z1, ρ1) and
(Z2, ρ2), respectively, Fi : X1×X2 → Xi for i = 1, 2 be semi–cyclic ordered pair of maps. For
any pair (x, y) ∈ X1 × X2 we define the sequences {xn}∞n=0 and {yn}∞n=0 by x0 = x, y0 = y
and xn+1 = F1(xn, yn), yn+1 = F2(xn, yn) for all n ≥ 0.

Definition 47. Let X1, X2 be nonempty subsets of the metric spaces (Z1, ρ1) and
(Z1, ρ2), respectively, Fi : X1 × X2 → Xi for i = 1, 2. An ordered pair (ξ, η) ∈ X1 × X2

is called a coupled fixed point of (F1, F2) if ξ = F1(ξ, η) and η = F2(ξ, η).

Just to fit some of the formulas into the text field, let us denote

M = MF1,F2(x, y, u, v)
= ρ1(x, F1(x, y)) + ρ2(y, F2(x, y)) + ρ1(u, F1(u, v)) + ρ2(v, F2(u, v))

and
N = NF1,F2(x, y, u, v)

= ρ1(x, F1(u, v)) + ρ2(y, F2(u, v)) + ρ1(u, F1(x, y)) + ρ2(v, F2(x, y)).

Theorem 23. Let (X1, ρ1) and (X2, ρ2) be two complete metric spaces. Let there are
two maps Fi : X1 × X2 → Xi, for i = 1, 2 and let there are non–negative constants ki for
i = 1, 2, 3, so that k1 + 2k2 + 2k3 < 1 and the ordered pair of maps (F1, F2) satisfies the
inequality

(11)
2∑
i=1

ρi(Fi(x, y), Fi(u, v)) ≤ k1(ρ1(x, u) + ρ2(y, v)) + k2MF1,F2(X) + k3NF1,F2(X)

for any (x, y), (u, v) ∈ X1 ×X2, and we have denoted X = (x, y, u, v). Then

(i) there is a unique coupled fixed point (ξ, η) ∈ X1 × X2 of (F1, F2) and moreover for
any initial guess (x0, y0) ∈ x the iterated sequences xn = F1(xn−1, yn−1) and yn =
F2(xn−1, yn−1), for n = 1, 2, . . . converge to the coupled fixed point (ξ, η)

(ii) there holds the a priori error estimates

ρ1(ξ, xn) + ρ2(η, yn) ≤ kn

1− k
(ρ1(x0, x1) + ρ2(y0, y1))
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(iii) there a posteriori error estimate

ρ1(ξ, xn) + ρ2(η, yn) ≤ k

1− k
(ρ1(xn, xn−1) + ρ2(yn, yn−1))

(iv) the rate of convergence

ρ1(ξ, xn) + ρ2(η, yn) ≤ k(ρ1(ξ, xn−1) + ρ2(η, yn−1))

where k = k1+k2+k3
1−k2−k3 .

If in addition X1, X2 ⊆ X, where (X, ρ) is a complete metric space and F2(x, y) =
F1(y, x), then the coupled fixed point (ξ, η) satisfies ξ = η.

Remark 3. By F2(x, y) = F1(y, x), actually we assume that Fi is defined on the set
(X1 ∪ X2) × (X1 ∪ X2). It is possible F1(x1, x2) 6∈ X1 not to hold inequality (11), provided
that x1, x2 ∈ X1 and x2 6∈ X2. Therefore in these case we should assume that X1 ≡ X2.

Connection between the second order conditions and the contraction type condi-
tions for semi–cyclic contraction pairs of maps

Let both participants have rational behavior, i.e. they want to maximize their payoff,
assuming that the functions P and ci, i = 1, 2 are differentiable, we reach with the system of
equations (1).

The equilibrium pair (x0, y0) of production is a solution of (1) [24, 50]. To ensure that
the solution (x0, y0) of (1) will present a maximization of the payoff functions a sufficient
condition is that Πi be concave or is satisfied the second order conditions [24, 50].

By using of response functions we alter the maximization problem into a coupled fixed
point one thus all assumptions of concavity and differentiability can be skipped.

Let us consider Theorem 23, so that X1, X2 be nonempty closed subsets of the complete
metric space (X, ρ), instead of being subsets of two different metric spaces, and constants
β = γ = 0. By putting u = x and v = y in Theorem 22 we get

(12)
S2 = ρ(F1(x, y), F1(u, v)) + ρ(F2(x, y), F2(u, v)
≤ αρ(x, u) + βρ(y, v) + γρ(x, u) + δρ(y, v) ≤ s(ρ(x, u) + ρ(y, v)),

where s = max{α + γ, β + δ} < 1.
Consequently Theorem 22 is a corollary of Theorem 23.
Theorem 23 may be stated in an economic language for k2 = k3 = 0.

Assumption 3. Let there is a duopoly market, satisfying the following assumptions:

1. the two firms are producing homogeneous goods that are perfect substitutes.

2. the first firm can produce quantities from the set X1 and the second firm can produce
quantities from the set X2, where X1 and X2 be closed, nonempty subsets of a complete
metric space (X, ρ)

3. let there exist a closed subset D ⊆ X1 × X2 and maps Fi : D → Xi, such that
(F1(x, y), F2(x, y)) ⊆ D for every (x, y) ∈ D, be the response functions for firm one
and two respectively
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4. let there exist α < 1, such that the inequality

(13) ρ(F1(x, y), F1(u, v)) + ρ(F2(x, y), F2(u, v)) ≤ α(ρ(x, u) + ρ(y, v))

holds for all (x, y), (u, v) ∈ X1 ×X2.

Then there exists a unique pair (ξ, η) in D, such that ξ = F1(ξ, η) and η = F2(ξ, η), i.e.
a market equilibrium pair.

If in addition F2(x, y) = F1(y, x) then the coupled fixed point (ξ, η) satisfies ξ = η.
In addition to providing sufficient conditions for the existence of market equilibrium,

Assumption 2 and Assumption 3 also provide sufficient conditions for the stability of the
sewuence of successive responses over time of the two participants. Of course, we assume that
over time, companies do not change their response functions.

It has been proved that from (13) follows (2), i.e. if the response functions satisfy (13),
being obtained after differentiating the payoff functions, then they have the corresponding
partial derivatives and the second-order condition for the coupled fixed point is satisfied.

Example 13. Let us consider a model of a duopoly market with a price function
P (x, y) = 100− x− y and cost functions C1(x) = x2

2
and C2(y) = y2

2
.

By (11) we get

(14)

∣∣∣∣∣ ∂Π1(x,y)
∂x

= 100− 3x− y = 0
∂Π2(x,y)

∂y
= 100− x− 3y = 0.

The second order conditions are ∂2Π1(x,y)
∂x2

= −3 < 0 and ∂2Π2(x,y)
∂y2

= −3 < 0. Therefore the

solution of (14) is market equilibrium, because there holds (2). Unfortunately the response
functions in the consedered model are F (x, y) = 100− 2x− y and f(x, y) = 100− x− 2y and
they do not satisfy Assumption 2.

Table 12. Values of the iterated sequence (xn, yn) if stared with (20, 30).

n 0 1 2 . . . 2k 2k+1
xn 20 30 20 . . . 20 30
yn 30 20 30 . . . 30 20

Table 13. Values of the iterated sequence (xn, yn) if stared with (20, 31).

n 0 1 2 3 4 5 6
xn 20 29 24 17 60 0 100
yn 31 18 35 6 71 0 100

In both cases Table 12 and Table 13 we see that the process is not converging.
Let us point out that the system (11) may have more than one solution (x, y), satisfying

the second order conditions (2). In this case we will need further investigation to find which
one of the solutions is the solution of the optimization problem of Cournot’s model.

Therefore although the considered has a stronger restriction than (11), it is a different
one from the well known payoff maximization Cournot’s model
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Comments on the coefficients α, β, γ and δ in Theorem 22

Although the Theorem 22 is a consequence of Theorem 23 it seems that the usage of
four coefficients may give better understanding of duopoly markets.

Let the response functions F1 and F2 satisfy

(15) ρ(F1(x, y), F1(u, v)) ≤ αρ(x, u) + βρ(y, v)

and

(16) ρ(F2(x, y), F2(u, v)) ≤ γρ(x, u) + δρ(y, v).

If max{α + γ, β + δ} ∈ (0, 1), then by summing up (15) and (16) the model satisfies
inequality (10). Let us assume that α and δ are close to 1 and β and γ are close to 0. This
means that both players do not pay too much attention to the behavior of the production of
the other one. They are interested mostly of their own productions.

Example 14. Let us consider a model with the following response functions F1(x, y) =
45 − 0.98x − 0.09y and F2(x, y) = 50 − 0.01x − 0.9y. An example of Cournot model can be
considered P (x, y) = 50 − 0.09x − 0.01y, and cost functions C1(x) = 0.985x2 and C2(y) =
0.86y2.

Thus we get that

|xn+2 − xn+1| = |F1(xn, yn)− F1(xn+1, yn+1)| ≤ 0.98|xn − xn+1|+ 0.09|yn − yn+1|

and

|yn+2 − yn+1| = |F2(xn, yn)− F2(xn+1, yn+1)| ≤ 0.01|xn − xn+1|+ 0.9|yn − yn+1|,

which can be interpenetrated as any player take account just on his change of the production.
The market equilibrium is (24.06, 26.18).

Table 14. Values of the iterated sequence (xn, yn) if stared with (10, 30).

n 0 1 2 3 10 21 50 120 121 599 600
xn 10 37 12 35 16.8 30.8 21.1 22.64 25.43 24.07 24.05
yn 30 18 33 20 28.6 24.1 25.8 26.03 26.34 26.19 26.18

We see from the Table 14 that at the very beginning the osculations of the sequence of
productions are big and it take a lot of time to get close enough to the equilibrium values.

An application of Theorem 23 in a newly investigated duopoly model

A deep analysis of a class of oligopoly markets is presented in [3]. In section 2 in
[3] authors analyze market equilibrium, obtained by the use of the first and second order
conditions. They have assumed P (Q) = Q−1/µ, where P be the market price, x, y ≥ 0 are
the quantity supplied by firm one and two, respectively, Q = x + y be the total output and
µ > 0 be a parameter. Both players share a linear cost function with constant average and
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marginal cost ci > 0. As far as part of the results in [3] are for ci = c for i = 1, 2, let us
assume that c1 = c2 = c. The first order conditions in [3] yield to the system of equations:∣∣∣∣∣ x = µQ− cµQ1+ 1

µ

y = µQ− cµQ1+ 1
µ .

Both players share one and the same response function

F1(x, y) = F2(x, y) = F (x, y) = µQ− cµQ1+ 1
µ ,

where Q = x+ y. The inequality 0 < cQ
1/µ
max <

1−2µ
2(1+µ)

< 1 holds true for any µ ∈ [0, 1/2).

The analysis in [3], using of the second order conditions yields that there exists a market

equilibrium if µ ≥ max
¶

1, x
2y−x ,

y
2x−y

©
and it can not be said anything if µ < 1.

Thus Theorem 23 covers and cases that are not covered by the classical first and second
order conditions.

Applications of Theorem 23 for optimization of non–differentiable payoff functions
and examples

It seems from Theorem 23 that we can impose different type of contraction conditions
that will be not equivalent to (13). We can restate Theorem 23, when k1 = k3 = 0 in the
economic language.

Example 15. Let us consider a market with two competing firms, producing perfect
substitute products. Let us consider the response functions of player one and two be

F1(x, y) =

ß
0.2 x ∈ [0, 0.8]
0.1 x ∈ (0.8, 1]

F2(x, y) =

ß
0.9 y ∈ [0, 0.1]
0.8 y ∈ (0.1, 1],

respectively.

There exists an equilibrium pair (x, y) and for any initial start in the economy the
iterated sequences (xn, yn) converge to the market equilibrium (x, y). We get in this case that
the equilibrium pair of the production of the two firms is (0.8, 0.1).

The considered model with response functions F1 and F2 does not satisfies Theorem 22.
The example shows that if Fi were obtained by solving the optimization of the payoff

functions, then we can not speak about the second order conditions as far as Fi are not
differentiable.

A generalized response function

Looking at the models of the duopoly in the paragraphs so far, we did not pay attention
to the products that were produced but not sold on the market. We assumed that in their
response the companies take into account only the products sold on the market. In order for
the constructed model to be more realistic, we must also take into account the redundant (or
unrealized) production.
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We assume that each market participant takes into account not only how much produc-
tion it has sold on the market, but also how much is left in its warehouses (i.e it has produced
without being able to sell it). We assume that each participant has complete information
not only how much he has sold on the market, but also the amount sold by his competitor.
Of course, none of the participants has information about the unrealized quantities of the
competitor.

Let us denote the set of the possible productions of player i by Ui; the set of the realized
production on the market by Pi ⊆ Ui; the set of its surplus quantities by si, i = 1, 2. Let
us put Xi = Pi × si. Each of the players is not able to know the surplus production of the
other one. Therefore a more real model of the response functions of the two player will be
f1 : X1 × P2 → U1, f2 : X2 × P1 → U2. Starting at a moment t0 with realized on the market
productions p

(0)
i , surpluses s

(0)
i and productions u

(0)
i , i = 1, 2 for both players it results to a

new productions of the players

u
(1)
1 = f1

Ä
p

(0)
1 , p

(0)
2 , s

(0)
1

ä
∈ Ui, u

(1)
2 = f2

Ä
p

(0)
1 , p

(0)
2 , s

(0)
2

ä
∈ U2.

The market reacts to this new levels of production by generating new surplus quantities
s

(1)
i = Qi(u

(1)
1 , u

(1)
2 ), where Qi : U1 × U2 → Ui, i = 1, 2 be the responses of the market to the

produced quantities of both players. Thus the realized quantities on the market for each of
the players at moment t1 will be

p
(1)
1 = u

(1)
1 − s

(1)
1 = f1

Ä
p

(0)
1 , p

(0)
2 , s

(0)
1

ä
−Q1

Ä
u

(1)
1 , u

(1)
2

ä
= f1

Ä
p

(0)
1 , p

(0)
2 , s

(0)
1

ä
−Q1

Ä
f1

Ä
p

(0)
1 , p

(0)
2 , s

(0)
1

ä
, f2

Ä
p

(0)
1 , p

(0)
2 , s

(0)
2

ää
and

p
(1)
2 = u

(1)
2 − s

(1)
2 = f2(p

(0)
1 , p

(0)
2 , s

(0)
2 )−Q2(u

(1)
1 , u

(1)
2 )

= f2(p
(0)
1 , p

(0)
2 , s

(0)
2 )−Q2(f1(p

(0)
1 , p

(0)
2 , s

(0)
1 ), f2(p

(0)
1 , p

(0)
2 , s

(0)
2 )).

We will define a new function, which we will call a generalized response function of the player
and the market. Let X ∈ X1, Y ∈ X2, i.e. X = (x, δx) ∈ P1 × s1 and Y = (y, δy) ∈ P2 × s2.
Let us denote x = (x, y, δx) and y = (x, y, δy).

F1(X, Y ) = F1(x, y, δx, δy) = (f1(x)−Q1(f1(x), f2(y)), Q1(f1(x), f2(y)))

and

F2(X, Y ) = F2(x, y, δx, δy) = (f2(y)−Q2(f1(x), f2(y)), Q2(f1(x), f2(y))).

As far as in Assumption 3 the sets X and Y can be subsets of Rn we can reformulate As-
sumption 3 for the case of the generalized response function of the player and the market:

Assumption 4. Let there is a duopoly market, satisfying the following assumptions:

1. the two firms are producing homogeneous goods that are perfect substitutes

2. the firm i, i = 1, 2 can produce quantities from the set Ui, its set of the realized on the
market production be Pi and the set of its surplus productions be si, where X = P1 × s1

and Y = P2 × s2 be closed, nonempty subsets of a complete metric space (Z, ρ)
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3. let there exist a closed subset D ⊆ X × Y and maps F1 : D → X and F2 : D → Y , such
that (F1(x, y), F2(x, y)) ⊆ D for every (x, y) ∈ D, be the generalized response function
of the player and the market for firm one and two respectively

4. let there exists α ∈ (0, 1), such that the inequality

(17) ρ(F1(x, y), F1(u, v)) + ρ(F2(x, y), F2(u, v)) ≤ α(ρ(x, u) + ρ(y, v))

holds for all (x, y), (u, v) ∈ X × Y .

Example 16. Let Ui = [0,+∞), Pi = [0,+∞), si = [0,+∞), X = P1 × s1 and
Y = P2 × s2. Let X and Y be subsets of (R2, ρ), where

ρ((x1, y1), (x2, y2)) = |x1 − x2|+ |y1 − y2|.

Let (X × Y ) be endowed with the metric ρ̃(·, ·) = ρ(·, ·) + ρ(·, ·). Let f1 : X × P2 → U1 and
f2 : Y × P1 → U2 be defined by

f1(x, y, δx) = 45− 0.5x+ 0.25y − 0.1δx

and
f2(x, y, δy) = 20− 0.2x− 0.25y − 0.05δy,

where (x, δx) ∈ X and (y, δy) ∈ Y .
Let the response functions of the market Q1 : U1 × U2 → U1 and Q2 : U1 × U2 → U2 be

defined by
Q1(x, y) = 0.05x+ 0.03y and Q2(x, y) = 0.04x+ 0.06y.

Let the generalized response function of the player and the market F1 : X × Y → X and
F2 : X × Y → Y be

F1(x, y, δx, δy) = (f1(x)−Q1(f1(x), f2(y)), Q1(f1(x), f2(y)))

and
F2(x, y, δx, δy) = (f2(y)−Q2(f1(x), f2(y)), Q2(f1(x), f2(y))).

The equilibrium solution of the market are x = 27.1, y = 9.6, δx = 1.6 and δy = 1.2.
The example show that in the equilibrium both players will have surplus productions greater
that zero.

If we suppose that the players do not pay attention to the surplus quantities, i.e
F1(x, y, δx) = 45 − 0.5x + 0.25y and F2(x, y, δy) = 20 − 0.2x − 0.25y, we get an equilib-
rium solution in the market x = 29.8 and y = 11.2.

A variational technique in the investigation of equilibrium in duopoly markets

Definition 48. Let (Z,�) be a partially ordered set, X, Y ⊆ Z and F : X × Y → X,
f : X × Y → Y be semi-cyclic maps. The ordered pair (F, f) is said to have the mixed
monotone property if

for any two x1, x2, y ∈ X, such that x1 � x2 there holds the inequality
F (x1, y) � F (x2, y)

and
for any two y1, y2, x ∈ X, such that y1 � y2 there holds the inequality

f(x, y1) � f(x, y2).
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A generalization of Ekeland’s variational principle

We will use the notation u =
(
u(1), u(2)

)
∈ Z × Z and for any u ∈ Z × Z let us denote

u =
(
u(2), u(1)

)
just to fit some of the formulas in the text field.

Theorem 24. Let (Z, ρ,�) be a partially ordered complete metric space, (Z ×Z, d,�),
X, Y ⊆ Z and F : X × Y → X and f : X × Y → Y be semi-cyclic, continuous maps with the
mixed monotone property. Let

V × U = {x = (x(1), x(2)) ∈ X × Y : x(1) � F (x) and x(2) � f(x)} 6= ∅.

Let T : X × Y → R ∪ {+∞} be a proper, l.s.c, bounded from below function. Let ε > 0 be
arbitrary and let u0 ∈ V ×U be an ordered pair so that the inequality T (u0) ≤ infV×U T (v)+ε
holds. Then there exists an ordered pair x ∈ V × U , such that

(i) T (x) ≤ T (u0)

(ii) d(x, u0) ≤ 1

(iii) for every w ∈ V×U different from x ∈ V×U holds the inequality T (w) > T (x)−εd(w, v).

Coupled fixed points for semi–cyclic maps with the mixed monotone property

Theorem 25. Let (Z, ρ,�) be a partially ordered complete metric space, (Z ×Z, d,�),
X, Y ⊆ Z and F : X × Y → X and f : X × Y → Y be an ordered pair of semi-cyclic maps
with the mixed monotone property. Let there exists α ∈ [0, 1), so that the inequality

ρ(F (x, y), F (u, v)) + ρ(f(x, y), f(u, v)) ≤ αρ(x, u) + αρ(y, v)

holds for all x � u and y � v. If there exists at least one ordered pair (x, y) ∈ X × Y , such
that x � F (x, y) and y � f(x, y), then there exists a coupled fixed points (x, y) of (F, f).

(25.i) If in addition every pair of elements in X × Y has a lower or an upper bound then
the coupled fixed point is unique.

(25.ii) if in addition every element in Z has a lower or an upper bound and f(x, y) = F (y, x)
then the coupled fixed point (x, y)) satisfies x = y.

Applications ot Theorem 25 in equilibrium in duopoly partially ordered markets

Now we can restate Theorem 25 in terms of economic language.

Assumption 5. Let us assume that two companies are offering products that are perfect
substitutes. The first one can produce quantities from the set X and the second firm can
produce quantities from the set Y , where X and Y be nonempty subsets of a partially ordered
complete metric space (Z, ρ,�). Let F : X × Y → X, f : X × Y → Y be the response
functions of firm one and two, respectively. Let there exists α ∈ (0, 1), such that

(18) ρ(F (x, y), F (u, v)) + ρ(f(x, y), f(u, v)) ≤ αρ(x, u) + αρ(y, v)
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holds for all x � u and y � v. If there exists at least one ordered pair (x, y) ∈ X × Y , such
that x � F (x, y) and y � f(x, y), then there exists a market equilibrium point (x, y), which is
a coupled fixed points of (F, f).

If in addition every pair of elements in X×Y has an lower or an upper bound, then the
coupled fixed point is unique.

The conditions imposed on the response functions states that we can say something
only if when ever the production of firm one decreases i.e x � u the production of firm two
increases i.e. y � v. One case where it can happen is if in a monopoly market enters a
second firm. In this case the first player will decrease its market share and the second one
will increase it.

Example 17. (Cournot’s model) Let there be two companies producing a pair of prod-
ucts, which are perfect substitutes. Let us assume that the second player enters the market,
so that outputs are (x1, x2) and (y1, y2). Then (x1, x2) � (y1, y2). Let endow the production
set R with the euclidean norm ‖ · ‖2. Consider the response functions F (x1, x2, y1, y2) and
f(x1, x2, y1, y2) defined by

F (x, y) =

ß x1+y1
3

+ 1
x2+y2

4
+ 1

, f(x, y) =

ß x1+y1
3

+ 1
x2+y2

2
+ 1

.

Therefore there exists a market equilibrium, where production is x1 = 3, x2 = 3 for the
first player and y1 = 3, y2 = 5 for the second one.

For response functions F and f if we try to apply the classical inequality for convex

functions
(
a+b

2

)2 ≤ a2+b2

2
then we will not be able to prove that inequality (18) holds true and

we will not be able to proof that

‖F (X, Y )− F (U, V )‖2 + ‖f(X, Y )− f(U, V )‖2 ≤
5
√

2

6
‖X − U‖+

5
√

2

6
‖Y − V ‖.

holds for all X, Y , U , V and thereafter to aplly the results from the begining of the chapter.

Thus the consideration of a partially ordered metric space and that inequality (18) holds
only for part of the elements of the space significantly increases the classes of oligopoly that
can be investigated.

Example 18. (Bertrand’s model) Let us alter the Example 17, by assuming a market
with two competing companies, each producing a single homogeneous product. The sole com-
petitive advantage is the price. Let us assume that the second firm enters the market, i.e. if
the productions are (x, p), x–quantity at a price of p and (y, q), y–quantity ate a price of q of
the first and the second firm, respectively, then (x, p) � (y, q), assuming that the second firm
is smaller, can produce at a higher prices. Let endow the production set R with the euclidean
norm ‖ · ‖2. Let us consider the response functions F (x, p, y, q) and f(x, p, y, q) defined in
Example 1.

Therefore there exists a market equilibrium. Actually the equilibrium production is
x = 3 at a price p = 3 of the first player and y = 3 at a price q = 5 for the second player.
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Coupled best proximity points for multi–valued maps

The results up to now about equilibrium in duopoly markets were obtained by assuming
that each player will react to the market by choosing a singled value response. A more natural
model will be obtained if we assume that each player may react by choosing some production
from a set of possible reactions, i.e. if we consider the response functions to be a multi-valued
functions.

Definition 49. Let X and Y be two sets. The ordered pair (F1, F2) of multi–valued
maps F1 : X × Y ⇒ X and F2 : X × Y ⇒ Y is called a semi–cyclic multi–valued map.

Definition 50. Let X and Y be two sets and (F1, F2) be a semi–cyclic multi–valued
map. The ordered pair (x∗, y∗) ∈ X × Y is called a coupled fixed point for (F1, F2) if there
holds x∗ ∈ F1(x∗, y∗) and y∗ ∈ F2(x∗, y∗).

Theorem 26. Let (X, ρ) and (Y, σ) be complete metric spaces, F1 : X × Y ⇒ X,
F2 : X × Y ⇒ Y and x̄ ∈ X, ȳ ∈ Y . Let there exists a constant r > 0 and α, β, γ, δ ∈ [0, 1),
satisfying max{α + γ, β + δ} < 1 such that the following holds:

(i) for all (x, y) ∈ Br(x̄)×Br(ȳ) the sets F1(x, y) and F2(x, y) are nonempty closed subsets
of X and Y

(ii) d(x̄, F1(x̄, ȳ)) + d(ȳ, F2(x̄, ȳ)) < r(1− λ), where λ = max{α + γ, β + δ}

(iii) the inequality

S2 = e(F1(x, y) ∩Br(ȳ), F1(u, v)) + e(F2(z, w) ∩Br(x̄), F2(t, s))
≤ αρ(x, u) + βσ(y, v) + γp(z, t) + δσ(w, s),

holds for all (x, y), (u, v), (z, w), (t, s) ∈ Br(x̄)×Br(ȳ).

Then, there exists at least ordered pair (x, y) ∈ Br(x̄)× Br(ȳ), which is a coupled fixed
points for the semi–cyclic multi–valued map (F1, F2).

Example 19. Let us choose 0 ≤ α < β < γ < δ ≤ η < +∞, n,m ∈ (0, 1). Let us
define the maps f : [0, δ] →

[
β+γ

2
, γ
]
, g : [α, η] →

[
β, β+γ

2

]
, ϕ : [0, δ] →

[
β+γ

2
, γ
]
, ψ : [α, η] →[

β, β+γ
2

]
. by

f(x) =
γ − β

2(δ + 1)n
(x+ 1)n +

β + γ

2
,

g(x) =
γ − β

2((η + 1)n − (α + 1)n)
(x+ 1)n + β − (α + 1)n

γ − β
2((η + 1)n − (α + 1)n)

,

ϕ(x) =
γ − β

2(δ + 1)m
(x+ 1)m +

β + γ

2
,

ψ(x) =
γ − β

2((η + 1)m − (α + 1)m)
(x+ 1)m + β − (α + 1)m

γ − β
2((η + 1)m − (α + 1)m)

.

Let us denote x̄ = ȳ = β+γ
2

, θ = min{|δ − x̄|, |α − ȳ|}. Let us consider R with the
canonical metric | · − · |. Let us denote the sets X = [0, δ], Y = [0, η]. lets us define the
semi-cyclic multi-valued maps

F (x, y) = {ξ : g(y) ≤ ξ ≤ f(x)} and G(x, y) = {ξ : ψ(y) ≤ ξ ≤ ϕ(x)}.
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A particular case can be obtained if n = m = 1, α = 0, β = 2, γ = 4, δ = 6 and η = 8.
Then f(x) = ϕ(x) = x

7
+ 22

7
, g(x) = ψ(x) = y

8
+ 2, r = 3, x = y = 3 and

S3 = e(F (x, y) ∩Br(x), F (u, v)) + e(G(z, w) ∩Br(y), G(t, s))
≤ 1

8
|x− u|+ 1

7
|y − v|+ 1

8
|z − t|+ 1

7
|w − s|.

Example 20. Let us consider the space Rp. Let us choose 0 < αi < βi < γi < δi <
ηi < +∞, ni,mi ∈ (0, 1] for i = 1, 2, so that

max
i=1,2

ß
ni(γi − βi)
2(δi + 1)ni

™
+ max

i=1,2

ß
mi(γi − βi)
2(δi + 1)mi

™
< 1

and

max
i=1,2

ß
ni(γi − βi)

2((ηi + 1)ni − (αi + 1)ni)

™
+ max

i=1,2

ß
mi(γi − βi)

2((ηi + 1)mi − (αi + 1)mi)

™
< 1.

Let us define the maps

fi : [0, δi]→
ï
βi + γi

2
, γi

ò
, gi : [αi, ηi]→

ï
βi,

βi + γi
2

ò
,

ϕi : [0, δi]→
ï
βi + γi

2
, γi

ò
, ψi : [αi, ηi]→

ï
βi,

βi + γi
2

ò
for i = 1, 2 by

fi(x) =
γi − βi

2(δi + 1)ni
(x+ 1)ni +

βi + γi
2

,

gi(x) = C(x+ 1)ni + βi − (αi + 1)niC,

ϕi(x) =
γi − βi

2(δi + 1)mi
(x+ 1)mi +

βi + γi
2

,

ψi(x) = D(x+ 1)mi + βi − (αi + 1)miD,

where C = γi−βi
2((ηi+1)ni−(αi+1)ni )

and D = γi−βi
2((ηi+1)mi−(αi+1)mi )

.

Let us denote xi = βi+γi
2

and θi = min{|δi − xi|, |αi − xi|} for i = 1, 2. let us endow R2

with the metric ρ((x, y), (u, v)) =
(∣∣∣x−uθ1 ∣∣∣p +

∣∣∣y−vθ2 ∣∣∣p)1/p

, p ∈ (1,+∞). let us denote the sets

Xi = [0, δi], Yi = [αi, ηi] for i = 1, 2 and let X = X1 × X2, Y = Y1 × Y2. Let us define the
semi-cyclic multi-valued maps F : X × Y ⇒ X and G : X × Y ⇒ Y by

F ((x1, x2), (y1, y2)) = {(ξ1, ξ2) : gi(yi) ≤ ξi ≤ fi(xi)}

and
G((x1, x2), (y1, y2)) = {(ξ1, ξ2) : ψi(yi) ≤ ξi ≤ ϕi(xi)}.

A disadvantage of the presented models in the previous paragraphs is that players choose
a fixed production at a fixed price. Actually the response of each player is any quantity form
a set of possible productions or a price from possible prices. Therefore we will consider the
response functions F : X × Y ⇒ U ⊂ X and f : X × Y ⇒ V ⊂ Y be multi–valued maps.
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Coupled best proximity points for semi–cyclic contraction pairs of maps

Assumption 6. Let us assume that two companies are offering products that are perfect
substitutes. The first one can produce quantities from the set X and the second firm can
produce quantities from the set Y , where X and Y be nonempty subsets of a partially ordered
complete metric space (Z, ρ) and x̄ ∈ X, ȳ ∈ Y . Consider F : X×Y ⇒ X and G : X×Y ⇒ Y
to be the response function of players one and two, respectively. Let the ordered F and f satisfy
the conditions of Theorem 26.

Then there exists at least one market equilibrium point (x, y) ∈ Br(x̄)×Br(ȳ), which is
a coupled fixed point for the ordered pair of response functions (F,G).

Example 21. Let in Example 19 we consider two firms, producing one good, which is
a perfect substitute. Let us put α = 10, β = 30, γ = 50, δ = 80 and η = 100 in Example
19. We may consider the interval [0, η] as the set of the total production. Let the first firm
be a smaller one and it production set is [0, δ] and the second one be a larger one with a
production set [α, η]. Let n = 1 and m = 1/2. Than for any initial start [x, y] in the market
the first firm chooses a production from the set

[
y
9

+ 260
9
, 10

81
x+ 3250

81

]
, the second firm from the

set
î

10
9

2
√
y + 1 + 40, 10 2√x+1+30 2√101−40 2√11

2√101− 2√11

ó
and

S4 = e(F (x, y) ∩Br(x), F (u, v)) + e(G(z, w) ∩Br(y), G(t, s))
≤ 10

81
|x− u|+ 1

9
|y − v|+ 5

9
|z − t|+ γ|w − s|,

where γ = 5√
101−

√
11
< 5

6
.

From max
{

10
81

+ 5
9
, 1

9
+ 5

6

}
= max

{
55
81
, 17

18

}
= 17

18
< 1 it follows that the pair of response

functions satisfies Assumption 6 and consequently there exists an equilibrium pair of produc-
tions (x, y), such that x ∈ F (x, y) and y ∈ G(x, y).

Example 22. Let us consider a model of a duopoly with two players, producing one
good, which is a complete substitute, and let they compete on quantities and prices simulta-
neously. Let choose in Example 20, α1 = 10, β1 = 30, γ1 = 40, δ1 = 60, η1 = 100, α2 = 1,
β2 = 3, γ2 = 4, δ2 = 5, η2 = 8 n1 = 1, n2 = 1/2, m1 = 1/2, m2 = 1/4. Let us consider
the sets Xi = [0, δi], Yi = [αi, ηi] for i = 1, 2 and let X = X1 × X2, Y = Y1 × Y2 and the
multivalued maps F : X × Y ⇒ X and G : X × Y ⇒ Y from Example 20, which are the
response functions of the two players, respectively, where the first coordinates are the response
on the qualities and the second coordinate is the response on the price. Let us endow R2 with

the metrics ρ((x, y), (u, v)) =
(∣∣∣x−uθ1 ∣∣∣p +

∣∣∣y−vθ2 ∣∣∣p)1/p

, p ∈ (1,+∞) from Example 20.

There exists an equilibrium pair of productions and prices ((x, p), (y, q)), such that
(x, p) ∈ F ((x, p), (y, q)) and (y, q) ∈ G((x, p), (y, q)).

Coupled best proximity points for semi–cyclic contraction pairs of maps

Definition 51. Let A, B be nonempty subsets of a metric space (X, ρ) and (F, f),
F : A × B → A, f : A × B → B be a semi-cyclic ordered pair of maps. An ordered pair
(ξ, η) ∈ A×B is called a coupled best proximity point of (F, f) if ρ(η, F (ξ, η) = ρ(ξ, f(ξ, η) =
dist(A,B).
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Definition 52. Let A, B be nonempty subsets of a metric space (X, ρ) and (F, f),
F : A×B → A, f : A×B → be a semi–cyclic ordered pair of maps. Let there exist a subset
D ⊆ A×B, such that F : D → A, f : D → B and such that (F (x, y), f(x, y)) ⊆ D for every
(x, y) ∈ D. The semi–cyclic ordered pair of maps (F, f) is said to be a contraction of type
two semi–cyclic ordered pair if there exist non-negative numbers α, β, such that α+β < 1 and
there holds the inequality ρ(F (x, y), f(u, v)) ≤ αρ(x, v) + βρ(y, u) + (1 − (α + β))dist(A,B)
for all (x, y), (u, v) ∈ D.

Definition 53. Let A, B be nonempty subsets of the metric spaces (X, ρ), F : A×B →
A, f : A×B → B be semi–cyclic ordered pair of maps. For any pair (x, y) ∈ A×B we define
the sequences {xn}∞n=0 and {yn}∞n=0 by x0 = x, y0 = y and xn+1 = F (xn, yn), yn+1 = f(xn, yn)
for all n ≥ 0.

Coupled best proximity points for semi–cyclic contractions of type two

Simply to fit a few of the equations within the content field let us denote d = dist(A,B),
Pn,m(x, y) = ‖xn− ym‖ and Wn,m(x, y) = Pn,m(x, y)− d = ‖xn− ym‖− d, where x = {xn}∞n=0

and y = {yn}∞n=0 are the iterated sequences defined in Definition 53.

Theorem 27. Let A, B be nonempty subsets of a uniformly convex Banach space (X, ‖·
‖). Let there exist a subset D ⊆ A × B and semi–cyclic maps, so that F : D → A and
f : D → B, so that (F (x, y), f(x, y)) ⊆ D for every (x, y) ∈ D. Let the ordered pair (F, f) be
a semi–cyclic contraction of type two. Then (F, f) has a unique coupled best proximity point
(ξ, η) ∈ A×B, (i.e., ‖η−F (ξ, η)‖ = ‖ξ− f(ξ, η)‖ = d). For any initial guess (x, y) ∈ A×B
there holds limn→∞ xn = ξ, limn→∞ yn = η, ‖ξ − η‖ = d, ξ = F (ξ, η) and η = f(ξ, η).

If in addition (X, ‖ · ‖) has a modulus of convexity of power type with constants C > 0
and q > 1, then

(i) A priori error estimates hold

‖ξ − xm‖ ≤M0
q

 
max{W0,1(x, y),W0,0(x, y)}

Cd
·

q
√

(α + β)m

1− q
√
α + β

;

‖η − ym‖ ≤ N0
q

 
max{W0,1(y, x),W0,0(y, x)}

Cd
·

q
√

(α + β)m

1− q
√
α + β

;

(ii) A posteriori error estimates hold

‖ξ − xn‖ ≤Mn−1
q

 
max{Wn−1,n(x, y),Wn−1,n−1(x, y)}

Cd
·

q
√
α + β

1− q
√
α + β

;

‖η − yn‖ ≤ Nn−1
q

 
max{Wn−1,n(y, x),Wn−1,n−1(y, x)}

Cd
·

q
√
α + β

1− q
√
α + β

,

where Mn = max{‖xn − yn‖, ‖xn − yn+1‖}, Nn = max{‖xn − yn‖, ‖yn − xn+1‖}.
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TRIPLED FIXED POINTS AND TRIPLED BEST PROXIMITY POINTS

Application of Theorem 27, when players’ production sets have an empty inter-
section

When considering a duopoly, it is possible that the sets of possible productions of the
two participants have an empty section. This possibility seems extreme at first glance, but it
still exists. For example, one company has a huge production and holds a large market share
and does not have the ability to maintain too low production levels. This is possible with
long-term contracts.

Theorem 27 can be stated in the economic language.

Players’ production sets have an empty intersection, each player is producing two
goods

Example 23. Let us consider a market with two competing firms, each firm produces
two products and any one of the items is completely replaceable with a similar product of the
other firm. Let us assume that the first firm can produce much less quantities than the second
one, i.e., if x1, x2 are the quantities produced by the first firm and y1, y2 are the quantities
produced by the second one and, then x1, x2 ∈ [0, 1] and y1, y2 ∈ [2, 3]. Let A = [0, 1] × [0, 1]
B = [2, 3]× [2, 3] be considered as subsets of (R2, ‖ · ‖2), which is a uniformly convex Banach
space with modulus of convexity δ‖·‖2(ε) ≥ ε2

3
of power type. Let us consider the response

functions F (x1, x2, y1, y2) and f(x1, x2, y1, y2) defined by

F (x, y) =

ß
3x1
8

+ x2
8
− 3y1

16
− y2

16
+ 1

x1
8

+ 3x2
8
− y1

16
− 3y2

16
+ 1

, f(x, y) =

ß
−3x1

16
− x2

16
+ 3y1

4
+ y2

4
+ 5

4

−x1
16
− 3x2

16
+ y1

4
+ 3y2

4
+ 5

4

.

There exists an equilibrium pair (x, y) = ((x1, x2), (y1, y2)) and for any initial start in
the economy, the iterated sequence (xn, yn) = ((xn1 , x

n
2 ), (yn1 , y

n
2 )) converges to the market

equilibrium (x, y). We get in this case that the equilibrium pair of the production of the two
firms is x = (1, 1), y = (2, 2) and the total production will be a = (3, 3).

Chapter V
TRIPLED FIXED POINTS AND TRIPLED BEST PROXIMITY POINTS

Examples are presented in [54] to show that it is possible to apply the coupled best
proximity points for solving of non–symmetric systems of equations.

We will try to generalize the notion of tripled fixed points following the technique from
[54]. The notion of tripled fixed points proposed in [9].

Notations and definitions

Let Ai, Bi for i = 1, 2, 3 be subset of X. Let us denote just to simplify the notations
A3 = A1 × A2 × A3 and B3 = B1 ×B2 ×B3.

Definition 54. Let Ai, Bi, i = 1, 2, 3 be six sets. We say that the ordered pair (F,G)
of triples of maps F = (F1, F2, F3) and G = (G1, G2, G3) be a cyclic ordered pair of triple of
maps if Fi : A3 → Bi, Gi : B3 → Ai for i = 1, 2, 3.
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Just for the the sake of simplicity we will assume for the rest that the pair of maps
(F,G) be a cyclic ordered pair of triple of maps, i.e. (F,G) = ((F1, F2, F3), (G1, G2, G3)).

Definition 55. We say that (ξ1, ξ2, ξ3) ∈ A3 is a tripled fixed point for the ordered pair
of triple of maps (F,G) if there holds ξi = Fi(ξ1, ξ2, ξ3), for i = 1, 2, 3.

Let us denote di = dist(Ai, Bi) for i = 1, 2, 3, where Ai, Bi are subsets of a metric space
(x, ρ).

Definition 56. Let Ai, Bi, i = 1, 2, 3 be subsets of a metric space (X, ρ) and let (F,G)
be a cyclic ordered pair of triple of maps. We say that (ξ1, ξ2, ξ3) ∈ A3 a tripled best proximity
point of F if ρ(ξi, Fi(ξ1, ξ2, ξ3)) = di, for i = 1, 2, 3.

Definition 57. Let Ai, Bi, i = 1, 2, 3 be six sets and let (F,G) be a cyclic ordered pair
of triple of maps.

For any triple
(
x(1), x(2), x(3)

)
∈ A3 we define the sequences

¶
x

(i)
n

©∞
n=0

, for i = 1, 2, 3 by

x
(i)
0 = x(i) for i = 1, 2, 3 and x

(i)
2n+1 = Fi

Ä
x

(1)
2n , x

(2)
2n , x

(3)
2n

ä
, x

(i)
2n+2 = Gi

Ä
x

(1)
2n+1, x

(2)
2n+1, x

(3)
2n+1

ä
for

i = 1, 2, 3 and for all n ≥ 0.

If we consider A1 = A2 = A3 = B1 = B2 = B3 and F2(x, y, z) = F1(y, z, x), F3(x, y, z) =
F1(z, x, y) and Gi(x, y, z) = Fi(x, y, x) for i = 1, 2, 3 we get the sequence defined in [2].

If we consider A1 = A2 = A3 = B1 = B2 = B3 and F2(x, y, z) = F1(y, x, y), F3(x, y, z) =
F1(z, y, x) and Gi(x, y, z) = Fi(x, y, x) for i = 1, 2, 3 we get the sequence defined in [9].

Generalized cyclic contraction ordered pair of triple of maps

Just to simplify some of the statements let us agree that every where (F,G) be an
ordered pair of ordered triples of maps, such that F = (F1, F2, F3), Fi : A1 × A2 × A3 → Bi

and G = (G1, G2, G3), Gi : B1 × B2 × B3 → Ai, for i = 1, 2, 3, where Ai, Bi for i = 1, 2, 3 be
nonempty subsets of the underlying space X, metric or normed space.

Definition 58. Let (X, ρ) be a metric space. We say that the cyclic ordered pair of
triple of maps (F,G) be a generalized cyclic contraction of type one if there holds

3∑
i=1

ρ
Ä
Fi
Ä
x

(1)
i , x

(2)
i , x

(3)
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for some constants α

(j)
i ∈ [0, 1) for i, j = 1, 2, 3, so that k = maxj=1,2,3

{
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∈ A3,

Ä
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i

ä
∈ B3 for i = 1, 2, 3.

In what follows we will use the notation d =
∑3

j=1 dj =
∑3

j=1 dist(Aj, Bj).

Definition 59. Let (X, ρ) be a metric space. The ordered pair of triples of maps (F,G)
is called generalized cyclic contraction pair of type two if the inequality

S5 =
∑3

i=1 ρ
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holds for some constants α
(j)
i ∈ [0, 1), i, j = 1, 2, 3, so that k = max

j=1,2,3

{
3∑
i=1

α
(j)
i

}
< 1 and anyÄ

x
(1)
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(2)
i , x

(3)
i

ä
∈ A3, (y

(1)
i , y

(2)
i , y

(3)
i ) ∈ B3 for i = 1, 2, 3.

Tripled fixed points

Theorem 28. Let Ai, Bi, i = 1, 2, 3 be nonempty, closed subsets of a complete metric
space (X, ρ). Let the ordered pair (F,G) be a generalized cyclic contraction of type 1. Then

(i) There exists a unique triple (ξ1, ξ2, ξ3) in (A1 ∩ B1) × (A2 ∩ B2) × (A3 ∩ B3), which is
a common triple fixed point for the maps F and G. Moreover the iteration sequences¶
x

(n)
i

©∞
n=0

, for i = 1, 2, 3, defined in Definition 57 converge to ξi for i = 1, 2, 3 respectively

for any initial guess triple
Ä
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1 , x

(0)
2 , x

(0)
3

ä
;

(ii) a priori error estimates hold max
¶
ρ(x

(n)
i , ξi) : i = 1, 2, 3

©
≤ kn

1−k
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(iii) a posteriori error estimates hold max
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i , ξ) : i = 1, 2, 3
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(iv) the rate of convergence is given by

∑3
i=1 ρ

Ä
x

(n)
i , ξi

ä
≤ k
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i=1 ρ

Ä
x
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i , ξi

ä
.

Example 24. Let us consider the system of nonlinear equations:

(19)

∣∣∣∣∣∣
−9x + ey−1 + 3arctg(z − 2) = 0

−24x+ 3x2 + e(y−1)2 + 3arctg((z − 2)2) = −36

−36x+ 3x3 + e(y−1)3 + 3arctg((z − 2)3) = −90.

We consider the functions F1(x, y, z) = x
4

+ ey−1

12
+ arctg(z−2)

4
, F2(x, y, z) = x2

8
+ e(y−1)2

24
+

arctg((z−2)2)
8

+ 1.5, F3(x, y, z) = x3

12
+ e(y−1)3

36
+ arctg((z−2)3)

12
+ 2.5, the sets A1 × A2 × A3 =

[0, 1]× [1, 2]× [2, 3] and we apply Theorem 28.

Table 15. Number m of iterations needed by the a priori estimate (0, 1, 2)

ε 0.1 0.01 0.001 0.0001 0.00001 0.000001
m 14 22 30 38 56 54

Table 16. Number m of iterations needed by the a posteriori estimate (0, 1, 2)

ε 0.1 0.01 0.001 0.0001 0.00001 0.000001
m 5 7 10 12 14 16

We get an approximation of the solution (0.3741116328, 1.615504553, 2.553428358).
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Chapter V

Tripled best proximity points

Theorem 29. Let Ai, Bi, for i = 1, 2, 3 be nonempty, closed and convex subsets of
a uniformly convex Banach space. Let the ordered pair (F,G) of ordered triples of maps
be a generalized cyclic contraction of type 2. Then F has a unique tripled best proximity
point (ξ1, ξ2, ξ3) ∈ A3 and G has a unique tripled best proximity point (υ1, υ2, υ3) ∈ B3, i.e.
‖ξi − Fi(ξ1, ξ2, ξ3)‖ = di, ‖υi −Gi(υ1, υ2, υ3)‖ = di, i = 1, 2, 3) and

(20)
Gi(F1(ξ1, ξ2, ξ3), F2(ξ1, ξ2, ξ3), F3(ξ1, ξ2, ξ3)) = ξi,
Fi(G1(υ1, υ2, υ3), G2(υ1, υ2, υ3), G3(υ1, υ2, υ3)) = υi

for i = 1, 2, 3.
Moreover υi = Fi(ξ1, ξ2, ξ3) and ξi = Gi(υ1, υ2, υ3) for i = 1, 2, 3. For any arbitrary

point
Ä
x

(0)
1 , x

(0)
2 , x

(0)
2

ä
there hold limn→∞ x

(2n)
i = ξi, limn→∞ x

(2n+1)
i = υi for i = 1, 2, 3 and∑3

i=1 ‖ξi − υi‖ = d.
If in addition the modulus of convexity δ is of power type with constants C > 0 and

q > 1 then tehre holds the error estimates:

(i) a priori error estimates hold max
{∥∥∥ξi − x(2m)

i

∥∥∥ : i = 1, 2, 3
}
≤ P0,1(x) q

»
W0,1(x)

Cd
· (

q√
k2)

m

1− q√
k2

(ii) a posteriori error estimates hold

max
{∥∥∥ξi − x(2n)

i

∥∥∥ : i = 1, 2, 3
}
≤ P2n,2n−1(x)

q

 
W2n,2n−1(x)

Cd
·

q
√
k

1− q
√
k2
,

where x = (x1, x2, x3) and xi = {x(n)
i }∞n=0 for i = 1, 2, 3 are the sequences defined in

Definition 57.

Variant of results from [2, 9, 47] are corollaries of Theorem 29.

A market equilibrium in oligopoly with three player

We will present a generalization of the duopoly model by looking at an oligopoly with
three companies.

Following [24], let us assume that three companies competing for one and the same
consumer segment and striving to meet the demand with overall production Market players
follow cost functions ci(xi), i = 1, 2, 3, respectively. Assuming that three firms are acting
rationally, the payoff functions are Πi(x) = xiP (

∑3
i=1 xi) − ci(xi), for i = 1, 2, 3 of the three

firms, respectively.
The goal of each company is to maximize its payoff, i.e.

max{Πi(x) : xi, assuming that xj for j 6= i are fixed}.

Provided that functions P and ci, i = 1, 2, 3 are differentiable, we get the system of
equations

(21)
∂Πi(x)

∂xi
= P

(
3∑
i=1

xi

)
+ xiP

′

(
3∑
i=1

xi

)
− c′i(xi) = 0, i = 1, 2, 3
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A market equilibrium in oligopoly with three player

The market equlibrium is a solution of (21) [24].

We can find an implicit formula for the response function in (21) xi =
c′i(xi)−P (

∑3
i=1 xi)

P ′(
∑3
i=1 xi)

=

Fi(x) for i = 1, 2, 3 and to transform the problem of maximization of the payoffs to a problem
of trepled fixed points.

Semi–cyclic ordered triple of maps

Definition 60. Let Ai, i = 1, 2, 3 be nonempty subsets of a metric space (X, ρ) and
F = (F1, F2, F3) be an ordered triple of maps. If Fi : A1 × A2 × A3 → Ai, i = 1, 2, 3, the the
ordered triple of maps F = (F1, F2, F3) is called a semi–cyclic maps.

Definition 61. Let Ai, i = 1, 2, 3 be nonempty subsets of a metric space (X, ρ) and
(F1, F2, F3) be a semi–cyclic ordered triple of maps, i.e. Fi : A1 × A2 × A3 → Ai, i = 1, 2, 3.
An ordered triple x = (x1, x2, x3) ∈ A1 ×A2 ×A3 is called a tripled fixed point of (F1, F2, F3)
if xi = Fi(x) for i = 1, 2, 3.

Definition 62. Let Ai, i = 1, 2, 3 be nonempty subsets of X. Let Fi : A1 × A2 × A3 →
Ai,i = 1, 2, 3. For any pair

Ä
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ä
∈ A1×A2×A3 we define the sequences

¶
x

(n)
i
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,

i = 1, 2, 3 by x
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(n)
i , x

(n)
i , x

(n)
i

ä
for all n ≥ 0. and all i = 1, 2, 3.

Definition 63. Let Ai, i = 1, 2, 3 be nonempty subsets of a metric space (X, ρ). Let
there exist a subset D ⊆ A1 × A2 × A3 and maps Fi : D → Ai for i = 1, 2, 3, such that
(F1(x), F2(x), F3(x)) ⊆ D for every x ∈ D. The ordered pair of ordered triple (F1, F2, F3)
is said to be a cyclic contraction ordered tripled if there exist non-negative numbers αi, βi, γi,
i = 1, 2, 3, such that max{

∑3
i=1 αi,

∑3
i=1 βi,

∑3
i=1 γi} < 1 and there holds the inequality

3∑
i=1

ρ(Fi(xi, yi, zi), Fi(ui, vi, ti)) ≤
3∑
i=1

(αiρ(xi, ui) + βiρ(yi, vi) + γiρ(zi, ti))

for all (xi, yi, zi), (ui, vi, ti) ∈ D, i = 1, 2, 3.

Theorem 30. Let Ai, i = 1, 2, 3 be nonempty and closed subsets of a complete metric
space (X, ρ). Let there exist a closed subset D ⊆ A1 × A2 × A3 and maps Fi : D → Ai,
i = 1, 2, 3, such that (F1(x, y, z), F2(x, y, z), F3(x, y, z)) ⊆ D for every (x, y, z) ∈ D. Let the
ordered tripled (F1, F2, F3) be a cyclic contraction ordered tripled. Then

(i) there exists a unique pair (ξ1, ξ2, ξ3) in D, which is a unique tripled fixed point for

the ordered pair (F1, F2, F3) and the iteration sequences
¶
x

(n)
i

©∞
n=0

, i = 1, 2, 3, de-

fined in Definition 62 converge to ξi, respectively, for any arbitrary chosen initial guessÄ
x
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(0)
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(0)
3

ä
∈ D

(ii) a priori error estimates hold max{ρ(x
(n)
i , ξi), i = 1, 2, 3} ≤ kn

1−k
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i=1 ρ(x
(1)
i , x
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i )

(iii) a posteriori error estimates hold max{ρ(x
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Conclusion

(iv) the rate of convergence for the sequences of successive iterations

3∑
i=1

ρ(x
(n)
i , ξi) ≤ k

3∑
i=1

ρ(x
(n−1)
i , ξi),

where k = max{
∑3

i=1 αi,
∑3

i=1 βi,
∑3

i=1 γi}.

If in addition F2(x, y, z) = F1(y, z, x) and F3(x, y, z) = F1(z, x, y) (i.e. the players have
a symmetric type of response functions) then the tripled fixed point (x, y, z) satisfies x = y = z.

Existence and uniqueness of market equilibrium in an oligopoly with three players

Example 25. Let us first start with an oligopoly model with three industrial companies
competing for one and the same consumer segment and striving to meet the demand with the
overall industrial production.

Let the response functions of each of the players be

F1(x1, x2, x3) =
90

4
− x2 + x3

4
, F2(x1, x2, x3) =

80

6
− x1 + x3

6
, F3(x1, x2, x3) =

70

8
− x2 + x3

8

and A1 = [0, 30], A2 = [0, 40], A3 = [0, 50].

There exists an equilibrium pair (ξ1, ξ2, ξ3) and for any initial start in the economy

the iterated sequences (x
(0)
1 , x

(0)
2 , x

(0)
3 ) converge to the market equilibrium (ξ1, ξ2, ξ3). The

equilibrium triple is
(

415
22
, 205

22
, 115

22

)
.

Conclusion

Summary of the obtained results

The main contributions in the present thesis

I. Ekeland’s variational principle for maps with the mixed monotone property is general-
ized. With the help of it, conditions for the existence and conditions for the uniqueness
of coupled fixed points for classes of maps with the mixed monotone property are found.
The classes of maps with the mixed monotone property, for which coupled fixed points
exist, have been extended using the generalized variation principle.

II. An error estimation technique for best proximity points, developed in [52] is presented,
using sequences of successive iterations. This technique was used to find the error esti-
mate for coupled and tripled best proximity points.

III. It is proven, that for the considered up to now cyclic maps their coupled fixed point
and coupled best proximity points (x, y) have to satisfy x = y. A generalization of the
notions of ordered pairs of cyclic maps, coupled fixed points and coupled best proximity
points are introduced and are named modified cyclic map, modified coupled fixed points
and modified coupled best proximity points, respectively. This new class of ordered
pairs of cyclic maps can be used in solving of non-symmetric systems of transcendental
equations, for which the known numerical methods, used in algebraic computer system
Maple 18.00 coupled not present the exact solution.
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Prospects for future research development

IV. The notion of coupled best proximity point is generalized for maps in modular func-
tion spaces. Using the possible generalizations of the modulus of convexity in modular
function spaces generalizations of key lemmas of Eldred and Veermani are proven. The
technique for the investigation of best proximity points in modular function spaces, de-
veloped in [51], is applied in the investigation of coupled best proximity points in modular
function spaces. An Illustration is presented for an application in solving of systems of
transcendental equations, for which the algebraic computer system Maple 18.00 could
not find the exact solution.

V. The notion of semi-cyclic maps has been introduced, which naturally arises when study-
ing market equilibrium in oligopoly markets. A new model for studying the existence
and uniqueness of market equilibrium in duopoly markets, which is based on the re-
sponse functions, is presented. The illustrations demonstrate its advantages over the
classical model for maximizing payoff functions by eliminating the need for differentia-
tion, studying the contour of the set of possible productions and obtaining conditions
for stability of the sequence of successive productions.

VI. The possibility of generalizing some of the studied problems in Chapters 1 to 4 for tripled
fixed points and tripled best proximity points in the study of oligopoly markets with
three players, using semi-cyclic maps of three variables is considered.

The main contributions in the present thesis are:
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Some of the results were presented in an invited talk at MATTEX 2020, CONFERENCE
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The connection between the contributions, the tasks, the paragraphs in the thesis
and the included publications.

The connection between the contributions, the tasks, the paragraphs in the thesis and
the included publications is as follows:
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IV 3 5,8,9,11,14 e),f)
V 4,5 2,3,4,12,13 f)
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